Genset Controller Unit, GCU 100

- Mounting
- Terminal overview
- Wiring
- Communication wiring
- Unit dimensions and cut-out
1. General information

1.1 Warnings, legal information and safety

1.1.1 Warnings and notes
Throughout this document, a number of warnings and notes with helpful user information will be presented. To ensure that these are noticed, they will be highlighted as follows in order to separate them from the general text.

Warnings

⚠️ Warnings indicate a potentially dangerous situation, which could result in death, personal injury or damaged equipment, if certain guidelines are not followed.

Notes

%i Notes provide general information, which will be helpful for the reader to bear in mind.

1.1.2 Legal information and disclaimer
DEIF takes no responsibility for installation or operation of the generator set. If there is any doubt about how to install or operate the engine/generator controlled by the Multi-line 2 unit, the company responsible for the installation or the operation of the set must be contacted.

⚠️ The Multi-line 2 unit is not to be opened by unauthorised personnel. If opened anyway, the warranty will be lost.

Disclaimer
DEIF A/S reserves the right to change any of the contents of this document without prior notice.

The English version of this document always contains the most recent and up-to-date information about the product. DEIF does not take responsibility for the accuracy of translations, and translations might not be updated at the same time as the English document. If there is a discrepancy, the English version prevails.

1.1.3 Safety issues
Installing and operating the Multi-line 2 unit may imply work with dangerous currents and voltages. Therefore, the installation should only be carried out by authorised personnel who understand the risks involved in working with live electrical equipment.

⚠️ Be aware of the hazardous live currents and voltages. Do not touch any AC measurement inputs as this could lead to injury or death.

1.1.4 Electrostatic discharge awareness
Sufficient care must be taken to protect the terminal against static discharges during the installation. Once the unit is installed and connected, these precautions are no longer necessary.
1.1.5 Factory settings
The Multi-line 2 unit is delivered from factory with certain factory settings. These are based on average values and are not necessarily the correct settings for matching the engine/generator set in question. Precautions must be taken to check the settings before running the engine/generator set.

1.1.6 UL applications
These flat surface panel-mounted controllers are intended to be used in Listed Generator Assemblies, where the suitability of the combination has been determined by Underwriters Laboratories.

1.2 About the installation instructions

1.2.1 General purpose
These Installation Instructions mainly include general product and hardware information, mounting instructions, terminal strip descriptions, I/O lists and wiring descriptions.

The general purpose of this document is to give the user important information to be used in the installation of the unit.

⚠️ Please make sure to read this document before starting to work with the Multi-line 2 unit and the gen-set to be controlled. Failure to do this could result in human injury or damage to the equipment.

1.2.2 Intended users
These Installation Instructions are mainly intended for the person responsible for the design and installation. In most cases, this would be a panel builder designer. Naturally, other users might also find useful information in the document.

1.2.3 Contents and overall structure
This document is divided into chapters, and in order to make the structure simple and easy to use, each chapter will begin from the top of a new page.
2. Mounting

2.1 GCU 100 mounting

2.1.1 Mounting of the unit
Included in the package is 12 fixing clamps.

The unit is designed for flush mounting for both IP52 and IP65 mounting. For IP52, four fixing clamps are to be used; two at the top and two at the bottom.

For IP65, all 12 clamps must be mounted to comply with the rating.

2.1.2 Unit dimensions and panel cutout
The unit is designed for mounting in the panel front.

In order to ensure optimum mounting, the panel door must be cut out according to the following measurements:

\[H \times W = 151.00 \times 211.00 + 1.00 \text{ mm} \]

\[H \times W = 5.94" \times 8.31" + 0.04" \]

ℹ️ Dimensions are in mm (inches) and valid for GCU 111/112/113.
2.1.3 Tightening torques

Unit panel door mounting: 0.15-0.20 Nm, 1.4-1.8 lb-in (see diagram in "Unit dimensions and panel cut-out")
Plug connections (terminals): 0.5 Nm, 4.4 lb-in
AOP-1 and AOP-2 (see diagram below)
Panel door mounting: 0.7 Nm, 6.2 lb-in
Sub-D screw: 0.2 Nm, 1.8 lb-in
DC-DC converter terminals: 0.5 Nm, 4.4 lb-in
Display

0.7 Nm
Screw M3
Bossard BN5687
or similar

0.2 Nm
9P Female
Sub 0
connector

Max. 10 mm
Min. 6 mm

20.0 (0.787)
3. Terminals

3.1 Terminal overview and description

3.1.1 Terminal overview

Unit rear view

The RJ11 connector for the PC connection interface box is placed on the side of the unit.

3.1.2 Terminal Description

For the relay outputs, the following terms will be used:
NO means Normally Open.
NC means Normally Closed.
Com. means common terminal for the individual relay.
<table>
<thead>
<tr>
<th>Terminal</th>
<th>Technical data</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Power supply +</td>
<td>6…36V DC (UL/cUL Listed: 7.5…32.7V DC)</td>
</tr>
<tr>
<td>2</td>
<td>Power supply –</td>
<td>0V DC</td>
</tr>
<tr>
<td>3-4</td>
<td>Status out/configurable. Contact ratings 1 A 24V DC/V AC Resistive</td>
<td>See note*</td>
</tr>
<tr>
<td>9</td>
<td>Common</td>
<td>Common for term. 10…15</td>
</tr>
<tr>
<td>10</td>
<td>Digital input</td>
<td>Start enable/configurable</td>
</tr>
<tr>
<td>11</td>
<td>Digital input</td>
<td>Remote start/stop/configurable</td>
</tr>
<tr>
<td>12</td>
<td>Digital input</td>
<td>Charge alternator D+ (running)/configurable</td>
</tr>
<tr>
<td>13</td>
<td>Digital input</td>
<td>Configurable</td>
</tr>
<tr>
<td>14</td>
<td>Digital input</td>
<td>Coolant temperature/configurable</td>
</tr>
<tr>
<td>15</td>
<td>Digital input</td>
<td>Oil pressure/configurable</td>
</tr>
<tr>
<td>19</td>
<td>Common</td>
<td>Common for emergency stop term. 20</td>
</tr>
<tr>
<td>20</td>
<td>Emergency stop and common for 21…23</td>
<td>Common for relay 21, 22 and 23 and input for emergency stop**</td>
</tr>
<tr>
<td>21</td>
<td>Relay output 21. Contact ratings 2 A 30V DC/V AC (UL/cUL Listed: 1 A Resistive)</td>
<td>Start prepare/configurable. Function NO</td>
</tr>
<tr>
<td>22</td>
<td>Relay output 22. Contact ratings 2 A 30V DC/V AC (UL/cUL Listed: 1 A Resistive)</td>
<td>Starter (crank)/configurable. Function NO</td>
</tr>
<tr>
<td>23</td>
<td>Relay output 23. Contact ratings 2 A 30V DC/V AC (UL/cUL Listed: 1 A Resistive)</td>
<td>Run coil/configurable. Function NO</td>
</tr>
</tbody>
</table>

Multi-functional inputs

<table>
<thead>
<tr>
<th>Terminal</th>
<th>Technical data</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Common</td>
<td>Common for term. 6…8</td>
</tr>
<tr>
<td>6</td>
<td>RMI 1/4…20 mA/digital input</td>
<td>Fuel level/configurable</td>
</tr>
<tr>
<td>7</td>
<td>RMI 2/4…20 mA/digital input</td>
<td>Oil pressure/configurable</td>
</tr>
<tr>
<td>8</td>
<td>RMI 3/4…20 mA/digital input</td>
<td>Water temp./configurable</td>
</tr>
</tbody>
</table>

Tacho RPM input

<table>
<thead>
<tr>
<th>Terminal</th>
<th>Technical data</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>RPM input (MPU)</td>
<td>Magnetic pick-up tacho generator</td>
</tr>
<tr>
<td>17</td>
<td>RPM-GND</td>
<td>Common for RPM input</td>
</tr>
<tr>
<td>18</td>
<td>RPM input (W/L)</td>
<td>Magnetic pick-up, PNP, NPN or charge alternator W terminal</td>
</tr>
</tbody>
</table>

3-phase generator voltage input

<table>
<thead>
<tr>
<th>Terminal</th>
<th>Technical data</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>33</td>
<td>Gen. voltage L1</td>
<td>Generator voltage and frequency</td>
</tr>
<tr>
<td>34</td>
<td>Gen. neutral</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>Not used, must not be connected</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>Gen. voltage L2</td>
<td></td>
</tr>
<tr>
<td>Terminal</td>
<td>Technical data</td>
<td>Description</td>
</tr>
<tr>
<td>----------</td>
<td>----------------</td>
<td>-------------</td>
</tr>
<tr>
<td>37</td>
<td>Not used, must not be connected</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>Gen. voltage L3</td>
<td></td>
</tr>
</tbody>
</table>

3-phase generator current input

<table>
<thead>
<tr>
<th>Terminal</th>
<th>Technical data</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>39</td>
<td>Gen. current L1, s1</td>
<td>Generator current</td>
</tr>
<tr>
<td>40</td>
<td>Gen. current L1, s2</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>Gen. current L2, s1</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>Gen. current L2, s2</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>Gen. current L3, s1</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>Gen. current L3, s2</td>
<td></td>
</tr>
</tbody>
</table>

3-phase busbar voltage inputs

<table>
<thead>
<tr>
<th>Terminal</th>
<th>Technical data</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>28</td>
<td>Busbar voltage L1</td>
<td>Busbar voltage</td>
</tr>
<tr>
<td>29</td>
<td>Busbar voltage neutral</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>Busbar voltage L2</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>Not used, must not be connected</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>Busbar voltage L3</td>
<td></td>
</tr>
</tbody>
</table>

Breaker relays

<table>
<thead>
<tr>
<th>Terminal</th>
<th>Technical data</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>45</td>
<td>Relay R45. Contact ratings 2 A 30V DC/250V AC (UL/cUL Listed: Contact ratings 2 A 30V DC/30V AC)</td>
<td>Configurable, function NO (normally open)</td>
</tr>
<tr>
<td>46</td>
<td>Relay R45</td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>Relay R47. Contact ratings 2 A 30V DC/250V AC (UL/cUL Listed: Contact ratings 2 A 30V DC/30V AC)</td>
<td>Configurable, function NO (normally open)</td>
</tr>
<tr>
<td>48</td>
<td>Relay R47</td>
<td></td>
</tr>
</tbody>
</table>

Modbus RS485 interface

<table>
<thead>
<tr>
<th>Terminal</th>
<th>Technical data</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>49</td>
<td>B (-)</td>
<td>Modbus RS485 RTU or ASCII</td>
</tr>
<tr>
<td>50</td>
<td>Data GND</td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>A (+)</td>
<td></td>
</tr>
</tbody>
</table>

CANbus port A: Engine interface

<table>
<thead>
<tr>
<th>Terminal</th>
<th>Technical data</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>53</td>
<td>CAN-H</td>
<td>CAN J1939 engine communication</td>
</tr>
<tr>
<td>54</td>
<td>Data GND</td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>CAN-L</td>
<td></td>
</tr>
</tbody>
</table>

Optional CANbus port B: AOP-2 interface

<table>
<thead>
<tr>
<th>Terminal</th>
<th>Technical data</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>57</td>
<td>CAN-H</td>
<td>CAN communication line to AOP-2</td>
</tr>
<tr>
<td>58</td>
<td>Data GND</td>
<td></td>
</tr>
<tr>
<td>59</td>
<td>CAN-L</td>
<td></td>
</tr>
</tbody>
</table>
* The status relay is the uP watchdog output. This relay is normally energised, and the switch is closed after power-up. If the uP fails or the power is lost, the relay will de-energise and the switch will open. If the unit fails to start up at power-up, then the relay switch will remain open.

** If terminal 20 is used for emergency stop, please see wiring diagram below.

The relay output functions are configurable via the PC utility software and can be configured to cover the following functions:

- Alarm/limit
- Engine run indication
- Horn
- Idle speed output
- Not used
- Prepare
- Run coil
- Starter
- Stop coil
- Engine heater
- Fuel pump

It is possible to choose run coil on one relay and stop coil on another, thus supporting engines with double systems.

The multi-functional inputs can be configured to cover the following functions:

- RMI sensor input
- 4…20 mA input
- Binary input with wire break (switch function)

Tacho RPM input (MPU) can be configured to cover the following functions:

- Magnetic pick-up (2-wire)
- NPN or PNP pick-up*
* These RPM inputs require external equipment.

Tacho RPM input with capacitor (W/L) can be configured to cover the following functions:

- Magnetic pick-up (2-wire)
- W terminal on charger alternator
- NPN or PNP pick-up*
* These RPM inputs require external components.

The generator voltage and current input can be configured to the following:

- Voltage 100…25000 V primary
- Current 5…9000 A primary
4. Wiring

4.1 Wiring diagram

Term. 12 can be used as alarm input if not used for charger generator terminal D+

Rex: 12 V systems: 47 Ω 4 W
24 V systems: 100 Ω 6 W

If a stop coil is used, the REX resistor can be connected to the starter relay (crank).

The illustrated configuration is an example of settings. The use of the relays can be chosen freely.

It is important to protect the unit against damage caused by high voltages. Therefore, the fuse must not be more than 2 A slow-blow.
4.2 DC connections

<table>
<thead>
<tr>
<th>Engine communication</th>
<th>Modbus</th>
<th>External I/O and AOP 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAN H</td>
<td>53</td>
<td>Controller</td>
</tr>
<tr>
<td>Com</td>
<td>54</td>
<td>GND</td>
</tr>
<tr>
<td>CAN L</td>
<td>55</td>
<td>A (+)</td>
</tr>
<tr>
<td>External I/O and AOP 2</td>
<td>Controller</td>
<td>CAN H</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Com</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CAN L</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Multi-functional inputs, RMI sensors</th>
<th>Multi-functional inputs, Analogue 4-20 mA</th>
<th>Multi-functional inputs, Binary input</th>
</tr>
</thead>
<tbody>
<tr>
<td>RMI</td>
<td>8</td>
<td>Controller</td>
</tr>
<tr>
<td>RMI</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>RMI</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tacho input</th>
<th>Tacho input</th>
<th>Tacho input</th>
</tr>
</thead>
<tbody>
<tr>
<td>Magnetic pickup/ Tacho generator</td>
<td>NPN/PNP pickup</td>
<td>W input from charger alternator</td>
</tr>
<tr>
<td>+24V DC</td>
<td>Controller</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>out</td>
<td>17</td>
</tr>
</tbody>
</table>

Connection example 4-20 mA

Active transducer

```
+12/24 V DC 0 V DC
+ Out - Out

Multi-input 6 5
```

Passive transducer

```
+12/24 V DC 0 V DC
+ -

Multi-input 6 5
```
4.3 Digital inputs

All digital inputs are 12/24V DC bi-directional optocoupler type. The typical wiring is illustrated below:

![Digital Input Diagram]

- The digital inputs use fixed signals. Only the mode shift input and the test input (if the timer is used) use pulse signal.

4.4 Charger alternator connections

The charger alternator can be used as running-feedback in two different ways:
1. Using the D+ terminal connected to terminal 12
2. Using the W terminal connected to the RPM input

- Usually only one of these possibilities is used.
Rex: Excitation resistor

<table>
<thead>
<tr>
<th>System</th>
<th>Resistance</th>
<th>Power</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 V</td>
<td>47 Ω 4 W</td>
<td></td>
</tr>
<tr>
<td>24 V</td>
<td>100 Ω 6 W</td>
<td></td>
</tr>
</tbody>
</table>

At standstill, the battery + is connected to terminal 9 (common), and a current flows to terminal 12 and via the D+ input on the alternator to ground (battery -). When the starter is engaged (cranking), the battery will supply the D+ through the REX resistor, helping the alternator to excite. When the alternator starts to produce voltage (excitation OK), the speed of the alternator will be above running speed, and the voltage on term. 12 will rise to a value higher than the battery voltage and then interrupt the current flow through REX and activate the running feedback input. Engine is running.

If a stop coil is used, the REX resistor can be connected to the starter relay (crank).
4.5 GCU wiring diagrams for voltage and current

4.5.1 GCU 113
3-phase

![Wiring Diagram for GCU 113](image)
2-phase L1L2

BUSBAR

GCU 113

TB

GB

Consumers

GENERATOR

TB OFF command

TB ON command

GB ON command

GB OFF command

GB ON command

TB OFF command

I1

I2

I3

U1

U2

U3

U1

U2

U3

N

L1

L2

28

29

30

31

32

33

36

34

38

40

39

42

41

44

43
2-phase L1L3

BUSBAR

GB

TB

Consumers

GENERATOR

GCU 100 installation instructions
4189340799 UK
4.5.2 GCU 112

3-phase

GCU 112

GB ON command

GB OFF command

GENERATOR

DEIF A/S
Page 20 of 31
2-phase L1L2

Diagram

- **BUSBAR**
 - N
 - L1
 - L2

- **GCU 112**
 - 28 \(U_{L1} \)
 - 29 N
 - 30 \(U_{L2} \)
 - 32 \(U_{L3} \)

- **GB**
 - ON command
 - OFF command

- **GB ON command**

- **GB OFF command**

- **GENERATOR**
 - UL1
 - UL2
 - UL3
 - N

GCU 100 installation instructions

- Wiring

Contact Information

- DEIF A/S
- 4189340799 UK

DEIF A/S
Page 21 of 31
2-phase L1L3

![Diagram of 2-phase L1L3 system](image)
4.5.3 GCU 111

3-phase

![Diagram of GCU 111]
2-phase L1L2

Consumer

GCU 111

33 U_{L1}
36 U_{L2} GENERATOR VOLTAGE
34 N
38 U_{L3}

40 I_1
39 I_2 GENERATOR CURRENT
41 I_3
42 I_2
44 I_3

GENERATOR
2-phase L1L3

Consumer

N L1 L3

GCU 111

33 U_L1
36 U_L2 GENERATOR VOLTAGE
34 N
38 U_L3

40 I1
39 I2 GENERATOR CURRENT
41 I3
42
44
43

GENERATOR
1-phase

Consumer

N L1

GCU 111

33 U_L1
36 U_L2
34 N
38 U_L3
40 I1
39
42 I2
41
44 I3
43

GENERATOR
5. Communication

5.1 Wiring instructions

Cable
Belden 3106 A or equivalent. 22 AWG (0.324 mm²) shielded twisted pair, min. 95 % shield coverage.

Cable shield
Connect the cable shield to earth at one end only.

GND terminal connection
In case of communication problems, the GND terminals of the unit and the external device can be linked together using a third wire.

CAN bus termination resistor
The size of the terminating resistors should be 120 Ω 1 %, 0.5 W resistor.

⚠️ Never connect the GND terminal to earth directly or through the shield!

⚠️ If the GND terminal is connected to a PLC or other device, the GND connection of this device must be isolated from earth!

⚠️ Maximum length of the CAN bus line is 400 m.
5.2 CANbus engine communication

5.2.1 Connection with 2-wire shielded cable (recommended)
5.2.2 Connection with 3-wire shielded cable

Multi-line 2
CAN-H
53
CAN-L
54
CAN-L
55

R
R

ECM
engine control module
5.3 Additional Operator Panel, AOP-2

If AOP-2 is used, end resistor must be switched on at the dip switch.

A DC/DC converter for the DC supply voltage and 2x1 m cable with an RJ12 plug in one end and stripped wires in the other end are included in the AOP-2 delivery.