PPM-3 Protection et Gestion de l'énergie

- Description des fonctions
- Modes et séquences
- Paramétrage de l'application
- Fonctions de gestion de l'énergie
- Autres fonctions
Ce document n'est pas à jour. Une version plus récente est disponible en anglais sur www.deif.com.

1. Informations générales

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1. Avertissements, mentions légales et sécurité</td>
<td>6</td>
</tr>
<tr>
<td>1.1.1. Avertissements et notes</td>
<td>6</td>
</tr>
<tr>
<td>1.1.2. Mentions légales et responsabilité</td>
<td>6</td>
</tr>
<tr>
<td>1.1.3. Questions de sécurité</td>
<td>6</td>
</tr>
<tr>
<td>1.1.4. Connaissance des décharges électrostatiques</td>
<td>6</td>
</tr>
<tr>
<td>1.1.5. Réglages usine</td>
<td>6</td>
</tr>
<tr>
<td>1.2. A propos de ce manuel</td>
<td>7</td>
</tr>
<tr>
<td>1.2.1. Objectif principal</td>
<td>7</td>
</tr>
<tr>
<td>1.2.2. Utilisateurs cible</td>
<td>7</td>
</tr>
<tr>
<td>1.2.3. Contenu et structure générale</td>
<td>7</td>
</tr>
</tbody>
</table>

2. Informations générales sur le produit

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1. PPM-3 Protection et Gestion de l'énergie</td>
<td>8</td>
</tr>
</tbody>
</table>

3. Description des fonctions

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1. Fonctions standard</td>
<td>10</td>
</tr>
</tbody>
</table>

4. Modes et séquences

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1. Modes de fonctionnement et séquences correspondantes</td>
<td>12</td>
</tr>
<tr>
<td>4.1.1. Types d'application</td>
<td>12</td>
</tr>
<tr>
<td>4.2. Description des modes de fonctionnement</td>
<td>12</td>
</tr>
<tr>
<td>4.2.1. Mode semi-auto</td>
<td>12</td>
</tr>
<tr>
<td>4.2.2. Auto mode</td>
<td>13</td>
</tr>
<tr>
<td>4.3. Générateurs multiples, gestion de l'énergie</td>
<td>13</td>
</tr>
<tr>
<td>4.3.1. Générateurs multiples, gestion de l'énergie</td>
<td>13</td>
</tr>
<tr>
<td>4.4. Générateurs multiples, répartition de charge</td>
<td>14</td>
</tr>
<tr>
<td>4.4.1. Répartition égale de la charge</td>
<td>14</td>
</tr>
<tr>
<td>4.4.2. Répartition de charge asymétrique (puissance fixe)</td>
<td>14</td>
</tr>
<tr>
<td>4.5. Contrôle du générateur de secours</td>
<td>14</td>
</tr>
<tr>
<td>4.5.1. Shutdown override (marche forcée)</td>
<td>14</td>
</tr>
<tr>
<td>4.5.2. Fonction blackout</td>
<td>14</td>
</tr>
<tr>
<td>4.5.3. Utilisation du générateur de secours comme générateur de port</td>
<td>15</td>
</tr>
<tr>
<td>4.5.4. Mode TEST pour le générateur de secours</td>
<td>16</td>
</tr>
<tr>
<td>4.6. Contrôle de l'alternateur attelé et de la connexion à quai</td>
<td>16</td>
</tr>
<tr>
<td>4.6.1. Contrôle de l'alternateur attelé / de la connexion à quai</td>
<td>16</td>
</tr>
<tr>
<td>4.6.2. Passage de l'alimentation par générateur diesel à l'alimentation par l'alternateur attelé / la connexion à quai</td>
<td>17</td>
</tr>
<tr>
<td>4.6.3. Passage de l'alimentation par alternateur attelé / à quai à l'alimentation par générateur diesel</td>
<td>17</td>
</tr>
<tr>
<td>4.6.4. Fonction de chevauchement entre un générateur diesel et la connexion à quai</td>
<td>17</td>
</tr>
<tr>
<td>4.6.5. Passage de l'alternateur attelé au mode propulsion de secours (PTH - Power Take Home)</td>
<td>16</td>
</tr>
<tr>
<td>4.6.6. Fonctionnement des connexions à quai en parallèle</td>
<td>21</td>
</tr>
<tr>
<td>4.7. Paramétrage du disjoncteur pour alimentation de navire à navire</td>
<td>22</td>
</tr>
<tr>
<td>("ship-to-ship")</td>
<td></td>
</tr>
<tr>
<td>4.8. Contrôle du jeu de barres séparé</td>
<td>23</td>
</tr>
<tr>
<td>4.8.1. Séparation d'un jeu de barres en sections jeu de barres de générateur diesel et jeu de barres de l'alternateur attelé</td>
<td>23</td>
</tr>
<tr>
<td>4.9. Reconnexion</td>
<td>23</td>
</tr>
<tr>
<td>4.9.1. Reconnexion des sections jeu de barres du générateur diesel et jeu de barres de l'alternateur attelé</td>
<td>23</td>
</tr>
<tr>
<td>4.9.2. Reconnexion des jeux de barres séparés des générateurs diesel</td>
<td>24</td>
</tr>
<tr>
<td>4.10. Schémas unifilaires</td>
<td>24</td>
</tr>
<tr>
<td>4.10.1. Illustrations des applications</td>
<td>24</td>
</tr>
<tr>
<td>4.10.2. Générateurs multiples, un seul jeu de barres</td>
<td>24</td>
</tr>
<tr>
<td>4.10.3. Générateurs multiples, 2 jeux de barres</td>
<td>25</td>
</tr>
<tr>
<td>4.10.4. Générateurs multiples, 1 générateur attelé, jeu de barres unique</td>
<td>25</td>
</tr>
</tbody>
</table>
4.10.5. Générateurs multiples, 1 alternateur attelé, 2 jeux de barres.. 26
4.10.6. Générateurs multiples, 2 alternateurs attelés, 2 jeux de barres... 26
4.10.7. Générateurs multiples, 2 alternateurs attelés, 3 jeux de barres.. 27
4.10.8. Générateurs multiples, jeux de barres multiples.. 27
4.10.9. Générateur de secours.. 28
4.11. Schémas de principe.. 28
4.11.1. Comment utiliser les schémas de principe... 28
4.11.2. Séquence d’ouverture du TB (générateur de secours).. 29
4.11.3. Séquence d’ouverture de GB.. 30
4.11.4. Séquence d’arrêt (STOP)... 31
4.11.5. Séquence de démarrage (START)... 32
4.11.6. Séquence de fermeture du TB (générateur de secours).. 33
4.11.7. Séquence de fermeture de GB.. 34
4.11.8. Puissance fixe.. 35
4.11.9. Générateur de secours en marche... 36
4.11.10. Séquence de test du générateur de secours.. 37
4.12. Connexion en boucle fermée sur le Jeu de Barres (wrapped busbar).. 38
4.12.1. Connexion en boucle fermée sur le Jeu de Barres (wrapped busbar)... 38
4.13. Séquences.. 28
4.13.1. Séquences.. 28
4.13.2. Séquence de démarrage (START).. 29
4.13.3. Conditions de la séquence de démarrage... 30
4.13.4. Retour d’information moteur tournant.. 31
4.13.5. Interruption de la séquence de démarrage... 32
4.13.6. Séquence d’arrêt (STOP)... 33
4.13.7. Points de consigne liés à la séquence d’arrêt... 34
4.13.8. Séquences du disjoncteur... 35
4.13.9. 7080 TB control (EDG uniquement)... 36

5. Paramétrage de l’application
5.1. Paramétrage initial de l’application.. 47
5.1.1. Configuration du type d’unité... 47
5.1.2. Configuration via l’utilitaire PC... 47
5.1.3. Configuration de l’application.. 47
5.2. Retirer une unité de l’application.. 50
5.2.1. Alimentation auxiliaire OFF.. 50
5.2.2. Alimentation auxiliaire ON.. 51
5.3. Gestion des pannes de CANbus.. 51
5.3.1. Mode d’échec CAN... 51
5.3.2. Communication CANbus redondante... 52
5.3.3. Alarmes CANbus.. 52
5.3.4. Classe de défaut CANbus.. 53
5.4. Relais.. 53
5.4.1. Paramétrage des relais.. 53
5.5. Auto-contrôle.. 54
5.5.1. Auto-contrôle.. 54
5.6. Mot de passe.. 55
5.6.1. Mot de passe.. 55
5.6.2. Accès aux paramètres.. 56

6. Fonctions de gestion de l’énergie
6.1. Système multi-maître... 57
6.1.1. Unité de commande.. 57
6.2. Marche/arrêt en fonction de la charge... 57
6.2.1. Fonction marche/arrêt en fonction de la charge... 57
6.2.2. Terminologie.. 58
6.2.3. Méthode utilisant la puissance produite.. 58
6.2.4. Méthode utilisant la puissance disponible.. 58
6.2.5. Principe de la puissance disponible.. 59
7. Autres fonctions

7.1. Fonctions de démarrage pour DG + EDG... 81
7.1.1. Retours d’information numériques... 81
7.1.2. Retour d’information de tachymètre analogique... 82
7.1.3. Pression d’huile... 83
7.2. Disjoncteur... 84
7.3. Temps de réarmement du disjoncteur... 84
7.3.1. Principe... 85
7.4. Inhibition d’alarme... 86
7.4.1. Inhibition d’alarme... 86
7.4.2. Run status (6160).. 88
7.5. Sorties état moteur tournant.. 89
7.6. Classe de défaut... 90
7.6.1. Moteur tournant.. 90
7.6.2. Moteur arrêté... 91
7.6.3. Configuration de la classe de défaut.. 91
7.6.4. Sortie de l’avertisseur sonore... 92
7.7. Compteurs de maintenance.. 92
7.8. Détection de rupture de câble.. 93
7.8.1. Principe... 93
7.8.2. Rupture de câble de MPU (menu 4550)... 94
7.8.3. Rupture du câble de la bobine d’arrêt (menu 6270)...................................... 94
7.9. Entrées numériques... 94
7.9.1. Description des fonctions... 96
7.10. Entrées multiples.. 100
7.10.1. 4-20 mA.. 100
7.10.2. 0-40V DC... 100
7.10.3. PT100/1000... 100
7.10.4. Entrées VDO.. 100
7.10.5. VDO oil (huile).. 101
7.10.6. VDO water (eau)... 102
7.10.7. VDO fuel (carburant).. 102
7.10.8. Illustration des entrées paramétrables... 104
7.10.9. Configuration...104
7.10.10. Numérique...105
7.11. Fenêtre des sorties du régulateur de vitesse et de l'AVR........105
7.12. Choix du fonctionnement des entrées.................................105
7.13. Choix de la langue...106
7.14. Compteurs...106
7.15. Compteurs kWh/kVARh..107
7.16. M-logic...108
 7.16.1. M-logic...108
7.17. Communication par l’USW..108
 7.17.1. Paramétrage de l’application..108
 7.17.2. Sécurité...108
7.18. Réglage des valeurs nominales..109
 7.18.1. Activation...109

8. Alarmes
 8.1. Généralités...110
 8.2. Alarmes de tension...110
 8.3. Protection surintensité en fonction de la tension.................111

9. Contrôleur PID
 9.1. Description du contrôleur PID..112
 9.2. Contrôleurs...112
 9.3. Schéma de principe..113
 9.3.1. Schéma de principe..113
 9.4. Régulateur proportionnel...113
 9.4.1. Plage de vitesse..114
 9.4.2. Zone de régulation dynamique..................................115
 9.4.3. Régulateur intégral...115
 9.4.4. Régulateur dérivé..116
 9.5. Contrôleur de répartition de charge..................................118
 9.6. Contrôleur de synchronisation...118
 9.6.1. Synchronisation dynamique..118
 9.6.2. Synchronisation statique..118
 9.7. Contrôle par relais...119
 9.7.1. Réglage des relais...120
 9.7.2. Durée du signal...120

10. Synchronisation
 10.1. Modes de synchronisation disponibles..........................122
 10.1.1. Modes de synchronisation disponibles........................122
 10.2. Synchronisation dynamique..122
 10.2.1. Signal de fermeture...123
 10.2.2. Situation de charge après synchronisation...............124
 10.2.3. Réglages...124
 10.3. Synchronisation statique..125
 10.3.1. Contrôleur de phase..126
 10.3.2. Signal de fermeture...126
 10.3.3. Situation de charge après synchronisation.................127
 10.3.4. Paramétrage...128
1. Informations générales

1.1 Avertissements, mentions légales et sécurité

1.1.1 Avertissements et notes
Dans tout ce document sont présentés des notes et avertissements à l'intention de l'utilisateur. Pour attirer l'attention, ils font l'objet d'une présentation particulière.

Avertissements

⚠️ Les avertissements indiquent une situation potentiellement dangereuse pouvant entraîner la mort ou des dommages corporels ou matériels, si certaines recommandations ne sont pas respectées.

Notes

⚠️ Les notes fournissent des informations générales qu'il convient de garder à l'esprit.

1.1.2 Mentions légales et responsabilité
DEIF décline toute responsabilité en ce qui concerne l'installation ou l'utilisation du groupe électrogène contrôlé par l'appareil. En cas de doute concernant l'installation ou le fonctionnement du moteur/générateur contrôlés par l'unité Multi-line 2, contacter l'entreprise responsable de l'installation ou de l'utilisation.

⚠️ Les appareils Multi-line 2 ne doivent pas être ouverts par un personnel non autorisé. Dans ce cas, la garantie ne saurait s'appliquer.

Avertissement
DEIF A/S se réserve le droit de modifier ce document sans préavis.

1.1.3 Questions de sécurité
L'installation du Multi-line 2 implique l'utilisation d'intensités et de tensions dangereuses. Par conséquent, l'installation doit être effectuée par un personnel qualifié conscient des risques que présente un matériel électrique sous tension.

⚠️ Soyez conscient des dangers des courants et des tensions. Toucher aux entrées de mesure AC peut entraîner des dommages corporels, voire la mort.

1.1.4 Connaissance des décharges électrostatiques
Il est indispensable de prendre les précautions nécessaires pour protéger les bornes de toute décharge électrostatique lors de l'installation. Une fois l'appareil installé et branché, ces précautions sont inutiles.

1.1.5 Réglages usine
L'unité Multi-line 2 est livrée avec certains réglages usine. Ces réglages usine sont basés sur des valeurs moyennes et ne sont pas nécessairement adaptés au moteur/générateur contrôlé. Il est indispensable de prendre les précautions nécessaires pour vérifier les réglages avant la mise en route du moteur/générateur.
1.2 A propos de ce manuel

1.2.1 Objectif principal
Ce manuel comprend essentiellement la description des fonctions, la présentation de l’affichage et de la structure des menus, des informations sur le contrôleur PID, la procédure de paramétrage et les accès aux listes de paramètres.

L’objectif principal de ce document est de fournir une vue d’ensemble pratique sur les fonctionnalités de l’appareil et ses applications. Ce manuel propose aussi à l’utilisateur les informations nécessaires pour paramétrer avec succès toute application spécifique.

Veillez lire ce manuel avant de travailler avec le contrôleur Multi-line 2 et le groupe électrogène concerné. Le non-respect de cet avertissement peut entraîner des dommages corporels ou matériels.

1.2.2 Utilisateurs cible
Ce manuel de référence concerne principalement le tableautier. En fonction de ce document, le tableautier fournit à l’électricien les informations dont il a besoin pour installer les contrôleurs, c.a.d. des schémas électriques détaillés. Dans certains cas, l’électricien peut utiliser la notice lui-même.

1.2.3 Contenu et structure générale
Ce document est divisé en chapitres, et pour rendre la structure simple et facile à utiliser, chaque chapitre commence au début d’une page.
2. Informations générales sur le produit

2.1 PPM-3 Protection et Gestion de l'énergie

Le PPM-3, unité de protection et gestion de l'énergie, est un système de gestion de l'énergie standard pour applications marines. Ce système gère les fonctions de contrôle, de surveillance et de protection des générateurs. Toutes les unités générateur diesel participent aux calculs des fonctions de gestion de l'énergie, et constituent ainsi un vrai système multi-maître. Une des unités générateur diesel est définie en interne comme l'unité de commande ("Command unit"). C'est cette unité qui effectue les calculs de priorité de démarrage et les autres fonctions liées à la gestion de l'énergie.

En cas de défaillance de l'unité de commande, les fonctions de gestion de l'énergie sont automatiquement transférées à la prochaine unité disponible.

La communication interne entre les unités s'effectue par CANbus interne. Ce CANbus est réservé à DEIF et ne peut être relié à d'autres systèmes CANbus externes.

La communication externe vers un système d'alarme et de surveillance peut se faire par:

- RTU Modbus (RS485)
- Profibus DP
- Ethernet TCP/IP Modbus

Le système PPM-3 peut gérer:

- 1-16 unités DG(générateur diesel) (1-15 avec une unité EDG) ID CAN 1-16
- 0-1 unités EDG(générateur de secours) ID CAN 1-16
- 0-2 unités SG(alternateur attelé) ID CAN 17-20
- 0-2 unités SHORE (connexion à quai) ID CAN 17-20
- 0-8 unités BTB (disjoncteur de couplage du JdB) ID CAN 33-40

Pour des informations complémentaires sur les possibilités des applications, voir la notice d’applications.
3. Description des fonctions

3.1 Fonctions standard

Fonctionnement
- Générateur diesel
- Générateur diesel de secours
- Alternateur attelé
- Disjoncteur de couplage du JdB
- Répartition de charge entre les générateurs diesel
- Transfert de charge entre l'alternateur attelé et la connexion à quai et inversement
- Puissance fixe pour générateur diesel et alternateur attelé (répartition de charge asymétrique)
- Contrôle des gros consommateurs (répartition de charge fixe/variable)
- Fonctionnement sécurisé (reserve de puissance supplémentaire)
- Refroidissement en fonction de la température

Contrôle du moteur
- Séquences marche/arrêt
- Bobine de marche et d’arrêt
- Sorties relais pour le contrôle du régulateur de vitesse

Protections (ANSI)
- Surintensité, 4 niveaux (51)
- Retour de puissance, 2 niveaux (32)
- Sur- et sous-tension (27/59)
- Sur- et sous-fréquence (81)
- Surcharge (32)
- Déséquilibre en intensité (46)
- Tension asymétrique (60)
- Perte d'excitation/surexcitation (40)
- Entrées multiples (numérique, 4-20mA, 0-40V DC, Pt100, Pt1000 ou VDO)
- Entrées numériques

Affichage
- Précédent pour utilisation déportée
- Touches marche/arrêt
- Touches pour opérations des disjoncteurs
- Messages d'état et d'information

M-logic
- Outil de configuration à logique simple
- Sélection des événements en entrée
- Sélection des commandes en sortie

Gestion de l'énergie
Fonctionnement de l'installation:
- Alimentation par générateur diesel (jusqu'à 16 générateurs)
- Alimentation par alternateur attelé (jusqu'à 2 alternateurs attelés)
- Alimentation par la connexion à quai
- Fonctionnement avec jeu de barres séparé (jusqu'à 8 disjoncteurs de couplage)
Fonctions de gestion de l'énergie

- Fonction blackout
- Marche/arrêt en fonction de la charge
- Choix de la priorité
 - Manuel
 - Heures de fonctionnement
 - Optimisation de la consommation de carburant
- Arrêt d'urgence (classe de défaut = arrêt sécurisé)
- Mode sécurisé (réserve de puissance supplémentaire)
- Nombre minimum de DG en marche
- Nombre maximum de DG en marche
- Réduction de charge (déconnexion des groupes de charge non-essentielle)
- Sorties de réduction de charge (analogiques et numériques)
- Connexion conditionnelle des gros consommateurs
4. Modes et séquences

4.1 Modes de fonctionnement et séquences correspondantes

4.1.1 Types d'application
Ce chapitre décrit les modes de fonctionnement dans diverses applications et les séquences correspon-
dantes pour chaque unité PPM-3, avec leurs schémas de principe.

Les unités PPM-3 peuvent être utilisées dans les types d'application énumérés dans le tableau ci-dessous:

<table>
<thead>
<tr>
<th>Champ d’application</th>
<th>Commentaire</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gén. Multiples, gestion de l’énergie</td>
<td>Standard</td>
</tr>
<tr>
<td>Contrôle du générateur de secours/de port</td>
<td>Standard</td>
</tr>
<tr>
<td>Puissance fixe pour générateur diesel et alternateur attelé</td>
<td>Standard</td>
</tr>
<tr>
<td>Transfert de charge entre l’alternateur attelé et la connexion à quai et inversement</td>
<td>Standard</td>
</tr>
<tr>
<td>Fonctionnement jeu de barres séparé</td>
<td>Standard</td>
</tr>
</tbody>
</table>

Si un PPM-3 est sous contrôle armoire (SWBD), aucun des modes de fonctionnement ci-dessous n’est accessible, et l’écran de l’appareil affiche “SWBD control”.

4.2 Description des modes de fonctionnement

4.2.1 Mode semi-auto
Semi-auto signifie que l’unité ne lance aucune séquence automatiquement, comme c’est le cas en mode au-
to. Elle n’amorce de séquence que si des signaux externes lui sont transmis.

Un signal externe peut être transmis de trois manières:

1. Utilisation des touches de l’affichage
2. Entrées numériques
3. Commandes Modbus

En version standard, le PPM-3 est fourni avec un nombre limité d’entrées numériques. Consult-
er la partie « Entrées numériques » dans la notice d’installation ainsi que la fiche produit pour
toute autre information concernant leur disponibilité.

Quand le générateur fonctionne en mode semi-auto, l’unité contrôle le régulateur de vitesse et le régulateur
de tension (AVR). La régulation AVR nécessite l’option D1.
Les séquences suivantes peuvent être activées en mode semi-auto :

<table>
<thead>
<tr>
<th>Commande</th>
<th>Description</th>
<th>Commentaire</th>
</tr>
</thead>
<tbody>
<tr>
<td>Démar-</td>
<td>La séquence d'arrêt est amorcée et se poursuit jusqu'au démarrage du générateur, ou jusqu’à ce que le nombre maximum de tentatives de démarrage soit atteint. La fréquence (et la tension) sont contrôlées pour préparer la fermeture du GB.</td>
<td>Unité générateur diesel uniquement</td>
</tr>
<tr>
<td>rage</td>
<td>Arrêt</td>
<td>Le générateur est arrêté. Après extinction du signal moteur tournant, la séquence d'arrêt est active pendant la période de temps d'arrêt prolongé (‘extended stop time’). Le générateur est arrêté sans temps de refroidissement.</td>
</tr>
<tr>
<td>Close CB</td>
<td>L'unité synchronise et ferme le disjoncteur, si le jeu de barres principal est sous tension.</td>
<td></td>
</tr>
<tr>
<td>Open CB</td>
<td>L'unité décharge et ouvre le disjoncteur à son point d'ouverture, si l'unité n'est pas indispensable à la production d'énergie du moment. L'unité n'ouvre pas le disjoncteur instantanément s'il y a un risque de blackout.</td>
<td></td>
</tr>
<tr>
<td>Close TB</td>
<td>L'unité synchronise et ferme le disjoncteur de couplage (TB) quand le disjoncteur du générateur de secours est fermé et que le jeu de barres principal est sous tension.</td>
<td>Unité générateur de secours uniquement</td>
</tr>
<tr>
<td>Open TB</td>
<td>L'unité décharge et ouvre le TB à son point d'ouverture si le générateur de secours est sous tension. L'unité n'ouvre pas le disjoncteur instantanément s'il y a un risque de blackout sur le jeu de barres de secours.</td>
<td>Unité générateur de secours uniquement</td>
</tr>
</tbody>
</table>

4.2.2 Auto mode
L'unité participe au contrôle automatique réalisé par le système de gestion de l'énergie. Aucune intervention humaine n'est nécessaire.

Le générateur de secours n'intervient pas dans la fonction marche/arrêt en fonction de la charge ou dans la gestion en fonction de la priorité. Voir la description de la fonction correspondante.

4.3 Générateurs multiples, gestion de l'énergie

4.3.1 Générateurs multiples, gestion de l'énergie

Mode Auto
Tous les générateurs diesel disponibles sont contrôlés par le système de gestion de l'énergie et sont mis en marche ou arrêtés selon la priorité de démarrage et la charge réelle du jeu de barres. Dans le cas où une alarme se déclenche sur un générateur en fonctionnement, le système démarre le générateur suivant dans la file et synchronise son disjoncteur avant de retirer du service le générateur en panne (alarme d'arrêt sécurisé). Si la panne entraîne un arrêt (déclenchement immédiat du disjoncteur et arrêt du générateur), le système démarre et synchronise le générateur suivant dans la file. Le système vérifie en même temps que les générateurs ne sont pas en surcharge. Dans cette éventualité, la fonction déconnexion de charge non-essentielle (NEL) est activée afin de maintenir l'alimentation du jeu de barres principal.
Si un gros consommateur est sollicité, le système calcule l'énergie requise et fait démarrer un générateur supplémentaire si nécessaire avant d'autoriser la connexion du gros consommateur. La fonction arrêt en fonction de la charge peut être bloquée soit par une entrée binaire (entrée paramétrable), soit par la sollicitation d'un gros consommateur (paramètre 8025).
Mode Semi-auto
Tous les générateurs diesel disponibles peuvent être mis en marche / arrêtés / synchronisés / déchargés grâce à des touches situées sur la face avant de chaque générateur. La fonction marche/arrêt en fonction de la charge du système de gestion de l’énergie est désactivée pour les générateurs sous contrôle semi-automatique.
Le système vérifie que les générateurs ne sont pas en surcharge. Dans cette éventualité, la fonction déconnexion de charge non-essentielle (NEL) est activée afin de maintenir l’alimentation du jeu de barres principal. Si un gros consommateur est sollicité, le système calcule l’énergie requise. Si l’énergie disponible est insuffisante, la connexion du gros consommateur ne sera pas autorisée.

4.4 Générateurs multiples, répartition de charge

4.4.1 Répartition égale de la charge
Auto et semi-auto
Dans les deux cas, la répartition de charge (et de VAr, option D1) est réalisée par la ligne interne CANbus. Deux ports CANbus sont disponibles pour la gestion de l’énergie et la répartition de charge. Si les deux sont sélectionnés, les deux lignes CANbus sont redondantes.
La répartition de charge est normalement basée sur une distribution égale de la charge en %. Cela signifie que des générateurs de puissance différente peuvent partager la charge.

4.4.2 Répartition de charge asymétrique (puissance fixe)
chaque unité DG peut être configurée pour fonctionner en mode puissance fixe (2952), à partir de l’écran d’affichage, de la fonctionnalité M-logic ou d’une entrée binaire. Dans ce cas le message d’état ‘FIXED POWER’ s’affiche. La valeur de la puissance fixe peut être définie dans le paramètre 2951.

L’unité choisie pour fonctionner à puissance fixe se règle automatiquement sur SEMI-AUTO.
Un seul générateur par jeu de barres indépendant peut tourner à puissance fixe.
Si un générateur fonctionne en puissance fixe et que la charge totale diminue au point d’atteindre la valeur de la puissance fixe, le système abaissa le point de consigne, de manière à éviter les problèmes de contrôle de fréquence, puisque ce générateur ne participe pas au contrôle de fréquence.
Lorsque le disjoncteur du générateur est fermé, la puissance du générateur augmente jusqu’au point de consigne de la puissance fixe.
Si le contrôle de l’AVR (option D1) est sélectionné, le point de consigne sera le facteur de puissance choisi.

4.5 Contrôle du générateur de secours

4.5.1 Shutdown override (marche forcée)
Lorsque le disjoncteur de couplage entre le jeu de barres de secours et le jeu de barres principal est ouvert (état interne), toutes les alarmes du générateur de secours sont automatiquement basculées sur WARNINGS, à l’exception de la classe de défaut « short circuit » (court-circuit) et des entrées binares “Overspeed” (surrégime) et « Emergency stop » (arrêt d’urgence).
Quand le disjoncteur de couplage (TB) est fermé, le générateur de secours est considéré comme un générateur diesel normal et la fonction marche forcée est désactivée.

4.5.2 Fonction blackout
La situation "blackout" ou "jeu de barres mort" est définie par:

- TB (entre jeu de barres de secours et jeu de barres principal) en position OFF
• détection de jeu de barres mort
• disjoncteur du générateur en position OFF.

Si le jeu de barres principal (MBB) est mort, le TB est déclenché par une bobine de sous-tension, de plus le PPM-3 EDG envoie la commande TB OFF. Après 15 secondes (réglage d’usine, modulable de 0 à 60 sec), le générateur de secours démarre et le disjoncteur du générateur ferme sur le jeu de barres mort dès que l’augmentation de tension/fréquence est correcte. Cette fonction est active dans les modes SEMI-AUTO et AUTO. Avec un jeu de barres mort en mode TEST, le PPM-3 EDG désactive automatiquement la fonction test et enclenche la séquence de démarrage blackout.

Modèle Auto
Après restauration de la tension sur le MBB, la synchronisation du TB intervient automatiquement, suivie de la décharge du disjoncteur du générateur, de la commande d’ouverture du GB, du refroidissement et de l’arrêt du moteur.

Modèle Semi-auto
Après restauration de la tension sur le MBB, l’opérateur peut synchroniser le disjoncteur de découplage en appuyant sur la touche ON du TB sur l’écran d’affichage du PPM-3 EDG. L’opérateur peut alors ouvrir (et décharger) le disjoncteur du générateur en appuyant sur la touche OFF du GB. Une pression sur la touche STOP déclenche le temporisateur de refroidissement, dont l’arrêt peut être obtenu par une pression supplémentaire.

4.5.3 Utilisation du générateur de secours comme générateur de port
Le fonctionnement en connexion à quai signifie que le générateur de secours est sollicité pour alimenter l’armoire principale. Cette fonction est utilisée pour économiser du carburant pendant que le bateau est à quai, car le générateur de secours est beaucoup moins puissant qu’un générateur diesel.

Un temporisateur de fonctionnement en parallèle est intégré au système (paramètre 1940). Quand le temps (modulable de 1 à 999,9 sec., réglage d’usine = 30 sec) est écoulé, le disjoncteur de couplage s’ouvre. Le temporisateur se déclenche lorsque l’EDG est connecté ET que tous les DG sont connectés au MBB ET que le générateur de secours n’est pas choisi comme générateur de port (entrée PPM-3 EDG).

Le fonctionnement en connexion à quai est possible en mode auto ou semi-auto.

Auto
Quand le mode connexion à quai est activé, le générateur de secours démarre et le disjoncteur du générateur se synchronise. Les générateurs diesel connectés au jeu de barres principal sont déchargés et arrêtés.

Semi-auto
En semi-auto, l’utilisateur peut démarrer et synchroniser le générateur de port avec les générateurs diesel sur le jeu de barres principal.

Avec le générateur de port, la temporisation de fonctionnement en parallèle est inactive, et le générateur de port est considéré par le système comme un générateur diesel ordinaire.
Le retour d’information sur la position du TB détermine l’activation des protections pour le fonctionnement en générateur de port. Si le TB est en position ON, toutes les protections sont équivalentes aux autres générateurs diesel. Si le TB est en position OFF (Marche forcée), les protections concernant la tension du jeu de barres, la surcharge, la surintensité etc. sont changées en avertissements. Les seules protections susceptibles de déclencher le disjoncteur du générateur sont le sur-règime, le court-circuit et l’arrêt d’urgence.

4.5.4 Mode TEST pour le générateur de secours

L’opérateur doit tester le fonctionnement de tous les générateurs de secours au moins une fois par semaine. Pour faciliter la tâche de l’utilisateur, un mode TEST a été ajouté sur le PPM-3 EDG. Le mode TEST peut être mis en œuvre par pression de la touche TEST ou par activation d’une entrée binaire.

Avec le menu 7040 (Test), l’opérateur peut régler :
- le point de consigne (pour la charge)
- le temporisateur (moteur tournant lors du test)
- le retour (quand le test est terminé, l’appareil revient au mode sélectionné, semi-auto/auto)
- le type de test (au nombre de 3 : test simple, test de charge ou test complet)

SIMPLE test:
Le générateur de secours démarre et fonctionne à sa fréquence nominale mais ne se synchronise pas et s’arrête lorsque le temps défini pour le temporisateur en mode test (modulable de 1 à 180 mn, 15 mn par défaut) est écoulé. Le mode test est alors désactivé automatiquement. Le temporisateur se déclenche lorsque le mode test a été activé.

LOAD test:
Le générateur de secours démarre et fonctionne à sa fréquence nominale, synchronise le disjoncteur du générateur et produit l’énergie définie comme point de consigne dans le menu 7041. Le test se déroule jusqu’à expiration de la temporisation. Le disjoncteur du générateur est alors déchargé et le générateur de secours s’arrête (avec un temps de refroidissement).

FULL test:
Le générateur de secours démarre, synchronise le disjoncteur du générateur et transfère la charge prédéfinie vers le générateur de secours avant d’ouvrir le disjoncteur de couplage (TB). Quand le temps est écoulé, le TB est synchronisé et la charge est retransférée vers le jeu de barres principal avant l’ouverture du disjoncteur du générateur et l’arrêt du générateur.

En cas de blackout, tous les types de test sont immédiatement interrompus.

Pour toute information complémentaire sur les possibilités du générateur de secours/de port, consulter la notice d’applications.

4.6 Contrôle de l'alternateur attelé et de la connexion à quai

4.6.1 Contrôle de l'alternateur attelé / de la connexion à quai

L’alternateur attelé et la connexion à quai n’ont pas de touches de sélection de mode individualisées. Chaque unité peut être placée sous contrôle de l’armoire. Le signal de l’armoire est transmis via une entrée binaire. Si l’unité n’est pas sous contrôle de l’armoire, elle est automatiquement placée en mode Auto.
4.6.2 Passage de l'alimentation par générateur diesel à l'alimentation par l'alternateur attelé / la connexion à quai
SG/SHORE peut être choisi simplement en appuyant sur la touche « SG/SC breaker ON ». Autrement, une entrée binaire ou une touche AOP peuvent être configurées à cet effet.

Quand l'alimentation SG/SHORE est choisie, le système vérifie que l'alternateur attelé et la connexion à quai sont prêts et peuvent supporter la charge. Si tel est le cas, le LED de la touche « SG/SC breaker ON » passe au jaune pour indiquer que la séquence a commencé. Toutes les unités DG connectées synchronisent l'alternateur attelé / la connexion à quai avec le jeu de barres. Quand le disjoncteur de l'alternateur attelé / de la connexion à quai est fermé, le LED du disjoncteur SG/SC passe au vert et les générateurs diesel se déchargent et s'arrêtent.

4.6.3 Passage de l'alimentation par alternateur attelé / à quai à l'alimentation par générateur diesel

Quand l'alimentation DG est choisie, le système de gestion de l'énergie vérifie qu'il y a suffisamment de générateurs diesel disponibles pour supporter la charge et que l'alternateur attelé / la connexion à quai ne sont pas sous contrôle de l'armoire (SWDB).

Si tel est le cas, le LED de la touche “SG/SC breaker OFF” passe au jaune pour indiquer que la séquence a commencé. Le système de gestion de l'énergie démarre le nombre nécessaire de générateurs diesel (en fonction de la priorité), ferme les disjoncteurs, décharge et ouvre le disjoncteur de l'alternateur attelé / de la connexion à quai.

4.6.4 Fonction de chevauchement entre un générateur diesel et la connexion à quai
Cette fonction de chevauchement permet de définir un temps très bref de fonctionnement en parallèle entre un générateur et une connexion à quai.

Elle est généralement utilisée quand le convertisseur à quai exige un temps maximum de fonctionnement en parallèle très court, et elle est disponible quand les unités DG sont en mode auto ou semi-auto.

Etant donné que la vitesse de communication CANbus entre les unités est limitée, le retour d'information de position des disjoncteurs doit être transmis à toutes les unités pour garantir un temps d'ouverture rapide des disjoncteurs.

Passage de l'alimentation SC à l'alimentation DG
Quand le disjoncteur du DG est synchronisé, le disjoncteur de la connexion à quai s'ouvre automatiquement après une temporisation.

Passage de l'alimentation DG à l'alimentation SC
Quand le disjoncteur du SC est synchronisé, et que le disjoncteur du générateur est ouvert après une temporisation.

Les retours d'information de position du GB peuvent être mis en parallèle, donc une entrée suffit pour la connexion à quai. Toutes les unités DG doivent être reliées au retour d'information de la connexion à quai.
Les retours d'information disjoncteur pour la fonction de chevauchement sont définis par M-Logic:

La fonction chevauchement est configurée dans le paramètre 2760 (DG/SC overlap):

2761 (Enable)
Pour activer / désactiver la fonction DG/SC Overlap (ON ou OFF)

2762 (Del.)
Réglage du temps maximum de fonctionnement en parallèle DG/SC
La même temporisation doit être utilisée pour la synchronisation du disjoncteur du générateur et pour celui de la connexion à quai.

2763 (Min load) SC only
Charge minimum sur le jeu de barres permettant de synchroniser le disjoncteur du générateur. Cette fonction empêche le retour de puissance vers le convertisseur à quai. Ce paramètre est exprimé en pourcentage de la puissance nominale du SC.

4.6.5 Passage de l'alternateur attelé au mode propulsion de secours (PTH - Power Take Home)
Le mode propulsion de secours (PTH) est activé via une entrée binaire sur l'unité PPM-3 SG Cette entrée est une des entrées paramétrables et doit être sélectionnée avant que le mode PTH ne soit possible.

Le fonctionnement en mode PTH est aussi possible d'un SG à un autre SG (leurs deux disjoncteurs doivent être fermés).

Mode PTH : Les générateurs diesel fournissent l'énergie électrique et font marcher l'alternateur attelé comme un moteur électrique pour faire tourner l'hélice. La fonction marche/arrêt en fonction de la charge est activée. Le moteur principal est arrêté.
L'alternateur attelé doit être synchronisé manuellement quand le mode PTH est sélectionné. Puisque le moiteur principal est arrêté, la synchronisation doit se faire avec un moteur d'appoint.

Quand l'entrée PTH est activée et que le disjoncteur de l'alternateur attelé est fermé, les paramètres de retour de puissance et de temporisation maximum en parallèle DG/SG ne sont pas pris en compte.

Si l'entrée PTH est retirée avec le disjoncteur du SG (SGB) fermé, l'unité SG déclenche le SGB.

Entrée "Zero Pitch"

Pour éviter de déclencher le SGB quand une charge élevée est appliquée, l'entrée "Zero Pitch" peut être configurée.

Si le "Zero Pitch" est configuré, il est impossible d'ouvrir le disjoncteur du SG à moins que l'entrée "Zero Pitch" ne soit activée. Le message d'information "PITCH NOT ZERO" est affiché si une commande d'ouverture du disjoncteur est envoyée sans que l'entrée "Zero pitch" ne soit activée.

Pour la synchronisation de l'alternateur attelé en mode PTH, les paramètres suivants sont utilisés :

- **2101 = Sync Df Max PTH** - valeur par défaut : 0,0 Hz
 (Différence maxi de fréquence permise pour la synchronisation PTH)

- **2102 = Sync Df MinPTH** - valeur par défaut : -0,3 Hz
 (Différence mini de fréquence permise pour la synchronisation PTH)

- **2103 = Sync DU Max PTH** - valeur par défaut : 5%
 (Différence maxi de tension permise pour la synchronisation PTH)

- **2104 = Power ramp down PTH** - valeur par défaut : 100%
 (Puissance maxi autorisée à l'ouverture du disjoncteur) Si défini à 100%, ce paramètre est désactivé.

- **8926 = Min no. run. PTH**
 (Nombre mini de générateurs en marche quand le mode PTH est activé)
Séquence PTH SGB ON :

Start

No

SGB dose request

Yes

No

Normal SGB Close sequence

"SYNC NOT POSSIBLE" In display

Start

Check sync

Start SGB Sync timer (1930)

Yes

SGB sync timer expired

No

Check sync OK

Yes

Close SGB

End

No

PMT mode Active

Yes

Milli meter connected 8925

Yes

Hz & V within limits

No

Yes

DEIF A/S
4.6.6 Fonctionnement des connexions à quai en parallèle
Dans les applications avec deux connexions à quai avec une alimentation commune, il est possible de permettre les deux disjoncteurs des connexions à quai d'être fermés simultanément.

Pour activer cette fonction, le paramètre 8980 "Parallel SCB" doit être ON.
4.7 Paramétrage du disjoncteur pour alimentation de navire à navire ("ship-to-ship")

Cette fonction unique d'alimentation "ship-to-ship" est utilisée pour les applications où un navire peut fournir de l'énergie à un autre navire.

Pour utiliser la fonction d'alimentation "ship-to-ship", l'entrée binaire sur l'unité PPM-3 SC peut être activée. Cette entrée est l'une des entrées paramétrables et doit être sélectionnée avant que la fonction "ship-to-ship" soit possible.

Dès que l'alimentation "ship-to-ship" est sélectionnée pour une unité PPM-3 SC, l'écran affiche le message d'état: "SHIP TO SHIP ENABLED".

Le disjoncteur de la connexion à quai peut maintenant être relié directement (s'il y a un jeu de barres mort sur l'autre navire) ou synchronisé avec un jeu de barres sous tension. Pour ce faire, il faut actionner la touche ON du disjoncteur sur l'écran d'affichage.

Dès que le disjoncteur de la connexion à quai est fermé, le message d'état "SHIP TO SHIP ACTIVE" est affiché sur l'écran de l'unité de la connexion à quai.
4.8 Contrôle du jeu de barres séparé

4.8.1 Séparation d'un jeu de barres en jeu de barres d'un générateur diesel A et jeu de barres d'un générateur diesel B
La fonction jeu de barres séparé (Split busbar) peut être sélectionnée de façon simple en appuyant sur la touche OFF du BTB. Autrement, une entrée binaire ou une touche AOP peuvent être configurées à cet effet.

Le système de gestion de l'énergie vérifie les conditions de charge instantanées de part et d'autre du disjoncteur et fait démarrer le nombre nécessaire de générateurs diesel avant d'ouvrir le disjoncteur de couplage du jeu de barres (BTB). Si les générateurs diesel ne sont pas en mesure de supporter les conditions de charge, le message « SPLIT NOT POSSIBLE » s'affiche et le BTB reste fermé.

Une fois la séparation réalisée, les calculs pour la fonction marche/arrêt en fonction de la charge sont effectués indépendamment de part et d'autre du BTB.

4.8.2 Séparation d'un jeu de barres en sections jeu de barres de générateur diesel et jeu de barres de l'alternateur attelé
La fonction jeu de barres séparé (Split busbar) peut être sélectionnée de façon simple en appuyant sur la touche OFF du BTB. Autrement, une entrée binaire ou une touche AOP peuvent être configurées à cet effet.

SPLIT ne peut être sélectionné que si l'alternateur attelé/la connexion à quai est sous tension. Le système de gestion de l'énergie décharge et ouvre le BTB. S'il n'est pas possible de synchroniser le disjoncteur de l'alternateur attelé/la connexion à quai, le message « SPLIT NOT POSSIBLE » apparaît sur l'écran d'affichage du BTB. Lorsque la séquence de séparation commence, le LED OFF du BTB est de couleur jaune. Quand le BTB s'ouvre, la séquence est terminée.

4.9 Reconnexion

4.9.1 Reconnexion des sections jeu de barres du générateur diesel et jeu de barres de l'alternateur attelé
Passage à l'alimentation du générateur diesel :
Pour reconnecter les deux armoires pour l'alimentation du DG, l'opérateur doit activer le LED « DG » sur l'unité BTB puis appuyer sur la touche ON du BTB.

Le changement de mode ne peut être effectué que si :
- l'unité BTB n'est pas sous contrôle de l'armoire (SWBD control)
- l'unité alternateur attelé n'est pas sous contrôle de l'armoire (SWBD control)
- un nombre suffisant d'unités DG sont en mode Auto.

Si les conditions de charge instantanées requièrent un DG supplémentaire, le système de gestion de l'énergie connecte le nombre nécessaire de générateurs diesel et synchronise le BTB, puis il y a délestage et ouverture du disjoncteur de l'alternateur attelé. Le LED « breaker closed » sur l'unité BTB reste jaune jusqu'à fermeture du BTB et ouverture du disjoncteur de l'alternateur attelé.

Passage au mode alternateur attelé :
Pour reconnecter les deux armoires pour l'alimentation du SG, l'opérateur doit activer le LED SG sur l'AOP de l'unité BTB et appuyer sur la touche ON du BTB.
Le changement de mode de l'installation ne peut être effectué que si :
- l'unité BTB n'est pas sous contrôle de l'armoire (SWBD control)
- l'unité alternateur attelé n'est pas sous contrôle de l'armoire (SWBD control)
- les unités DG connectées sont en mode Auto.
Quand ces conditions sont remplies, les générateurs diesel synchronisent le BTB puis déchargent de la puissance et s'arrêtent. Le LED « BTB Closed » reste jaune jusqu'à fermeture du BTB et du disjoncteur de l'alternateur attelé et ouverture du disjoncteur des générateurs diesel.

4.9.2 Reconnexion des jeux de barres séparés des générateurs diesel
Pour reconnecter les deux sections pour l'alimentation des DG, l'opérateur doit appuyer sur la touche ON du BTB. Le BTB est alors synchronisé. La fonction normale marche/arrêt en fonction de la charge est activée et gère l’arrêt des générateurs diesel selon leur ordre de priorité.

4.10 Schémas unifilaires

4.10.1 Illustrations des applications
Dans ce qui suit, les différentes applications sont illustrées par des schémas unifilaires.

4.10.2 Générateurs multiples, un seul jeu de barres
Ce système peut gérer de 2 à 16 générateurs diesel.
4.10.3 Générateurs multiples, 2 jeux de barres
Ce système peut gérer de 2 à 16 générateurs diesel.

Des générateurs diesel peuvent être ajoutés des deux côtés du BTB.

4.10.4 Générateurs multiples, 1 générateur attelé, jeu de barres unique
Ce système peut gérer de 2 à 16 générateurs diesel et un alternateur attelé.
4.10.5 Générateurs multiples, 1 alternateur attelé, 2 jeux de barres
Ce système peut gérer de 2 à 16 générateurs diesel et un alternateur attelé.

Des générateurs diesel peuvent être ajoutés des deux côtés du BTB.

4.10.6 Générateurs multiples, 2 alternateurs attelés, 2 jeux de barres
Ce système peut gérer de 2 à 16 générateurs diesel et deux alternateurs attelés.

Des générateurs diesel peuvent être ajoutés des deux côtés du BTB.
4.10.7 Générateurs multiples, 2 alternateurs attelés, 3 jeux de barres
Ce système peut gérer de 2 à 16 générateurs diesel et deux alternateurs attelés.

4.10.8 Générateurs multiples, jeux de barres multiples
Ce système peut gérer de 2 à 16 générateurs diesel et jusqu'à 8 BTB.

Des générateurs diesel peuvent être ajoutés dans n'importe quelle section.
4.10.9 Générateur de secours

Si le système comprend un générateur de secours, un maximum de 15 générateurs diesel peut être contrôlé.

4.11 Schémas de principe

4.11.1 Comment utiliser les schémas de principe
Dans les sections qui suivent, les fonctions les plus importantes sont illustrées à l'aide de schémas de principe. Les fonctions présentées sont :

- Séquence d'ouverture du TB (générateur de secours)
- Séquence d'ouverture de GB
- Séquence d'arrêt (STOP)
- Séquence de démarrage (START)
- Séquence de fermeture du TB (générateur de secours)
- Séquence de fermeture de GB
- Puissance fixe
- Générateur de secours en marche
- Séquence de test (générateur de secours)

Ces schémas de principe sont donnés à titre indicatif seulement. Ils sont simplifiés dans une certaine mesure pour une meilleure illustration.
4.11.2 Séquence d'ouverture du TB (générateur de secours)

Start

TB closed

Yes

Main swbd failure

No

Yes

Open TB

TB opened

No

Alarm "TB open failure"

Yes

End
4.11.3 Séquence d'ouverture de GB

Start

Stop conditions OK

Yes

Is GB closed

No

Yes

Soft open

No

Failclas shutdown

Yes

Deload DG

Load < open set point

No

Ramp down timer expired

Yes

Open GB

GB opened

No

Alarm

Yes

End
4.11.4 Séquence d’arrêt (STOP)

Start

Stop conditions OK

Yes

GB open seq OK

Yes

AUTO mode

Yes

Cooldown timer run out

Yes

Stop engine

Genset stopped

Yes

End

No

Alarm

Yes

Stop conditions OK

No

Start
4.11.5 Séquence de démarrage (START)
4.11.6 Séquence de fermeture du TB (générateur de secours)

Start

TB open

Yes

No

Voltage on MBB

Yes

No

Voltage on gen

Yes

No

GB closed

Yes

No

Back sync ON

Yes

No

Sync TB

Sync timer runout

Yes

No

Synchronised

Yes

No

Close TB

TB closed

Yes

No

End

Direct close OK

GB open sequence

Yes

No

Alarm sync. failure

Alarm GB open failure

Close failure alarm
4.11.7 Séquence de fermeture de GB

Start

GB open
Yes
No

Start seq OK
Yes
No

Emer. DG application
Yes
No

TB closed
Yes
No

Voltage on bus
Yes
No

Direct closing
OK

Sync GB

Time runout
Yes
No

DG freq match BB freq
Yes
No

Alarm sync failure

Close GB

GB closed
Yes
No

Alarm

End
4.11.8 Puissance fixe

Start

Start sequence (Semi-Auto)

GB close sequence (Semi-Auto)

Ramp-up to load set point
Operation

Base load deselected

GB open sequence (Semi-Auto)

Stop sequence (Semi-Auto)

End
4.11.9 Générateur de secours en marche

Start

MBB fail.
Yes

Start engine & open TB

Engine run.
Yes

Close GB

MSB ok
Yes

Time out
Yes

Close TB

Open GB
Stop engine
End
4.11.10 Séquence de test du générateur de secours

Start
Select TEST mode
Start Sequence
Engine run.
Yes
V/Hz ok
Yes
Test timer running
Simple test
Yes
Load test
No
Full test
Yes
Sync. GB
GB on
Yes
Ramp up to Pset
No
Sync. GB
GB on
No
Open TB
Yes
De-load GB
GB off
Yes
Stop engine
Eng. stopped
No
Return to standby
End
No
Yes

End
4.12 Connexion en boucle fermée sur le Jeu de Barres (wrapped busbar)

4.12.1 Connexion en boucle fermée sur le Jeu de Barres (wrapped busbar)
Le choix de connexion en boucle fermée (wrapped busbar) se fait dans l’outil de configuration de l’USW.

Pour permettre la connexion en boucle fermée sur le jeu de barres, le paramètre 8990 (Closed Ring) doit être à ON.
Quand une ouverture de BTB est demandée avec une connexion en boucle fermée, le BTB sollicite déclenche le disjoncteur. Il n’y a pas de délestage!

4.13 Séquences

4.13.1 Séquences
Cette section est consacrée aux séquences du moteur, à celles du disjoncteur du générateur et le cas échéant à celles du disjoncteur de couplage du jeu de barres. Ces séquences sont automatiquement amorcées en mode auto, ou avec sélection des commandes en mode semi-auto.

dans le mode semi-auto, la séquence sélectionnée est la seule séquence amorcée (par ex. après pression sur la touche START : le moteur démarre, mais aucune synchronisation n’est initiée par la suite).

Les séquences suivantes sont illustrées ci-dessous:

- Séquence de démarrage (START)
- Séquence d’arrêt (STOP)
• Séquences du disjoncteur

⚠️ Consultez la notice d’installation pour le branchement du disjoncteur.

4.13.2 Séquence de démarrage (START)
Les schémas suivants illustrent les séquences de démarrage du générateur avec préparation normale au démarrage et préparation prolongée au démarrage.

Quelle que soit la fonction de préparation au démarrage choisie, la bobine de marche est activée 1 sec avant le relais de démarrage (starter).
4.13.3 Conditions de la séquence de démarrage
La mise en oeuvre de la séquence de démarrage est soumise aux conditions suivantes:

- VDO oil : Pression d'huile
- VDO 23 (niveau de carburant)
- VDO 35 (température de l'eau)

Cela signifie que si par ex. la pression d'huile n’est pas suffisante, le relais du démarreur n’amorcera pas le démarreur.

Le paramétrage est réalisé en 6185. Pour chacune des mesures VDO (pression d’huile, niveau de carburant ou température de l'eau), la règle est que sa valeur doit être supérieure à la valeur prédéfinie en 6186 avant que le démarrage soit amorcé.

Si la valeur en 6186 est réglée à 0.0, la séquence de démarrage commence immédiatement.

Le diagramme ci-dessous montre un exemple où le signal VDO augmente lentement et où le démarrage commence à la fin de la troisième tentative.
4.13.4 Retour d'information moteur tournant

Plusieurs types de retour d'information moteur tournant peuvent être utilisés pour déterminer si le moteur est en marche. Se référer au menu 6170 pour le choix du type.

La détection de fonctionnement inclut une procédure de sécurité de routine. Le type sélectionné constitue le retour d’information moteur tournant principal. À tout moment, tous les types de retour d’information moteur tournant sont utilisés pour la détection du fonctionnement. Si pour une raison quelconque, le type principal ne détecte pas le fonctionnement, le relais du démarreur reste activé pendant une seconde de plus. Si un retour d’information moteur tournant est détecté sur la base d’un des choix secondaires, le générateur sera considéré comme tournant. Ainsi, le générateur reste opérationnel même si un tachymètre est encrassé ou endommagé.

Dès lors que le générateur fonctionne, peu importe qu’il ait démarré sur la base d’un retour d’information principal ou secondaire; la détection de fonctionnement s’opérera sur la base de tous les types disponibles.
4.13.5 Interruption de la séquence de démarrage
La séquence de démarrage s’interrompt dans les situations suivantes :

<table>
<thead>
<tr>
<th>Événement</th>
<th>Commentaire</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signal d’arrêt</td>
<td></td>
</tr>
<tr>
<td>Échec de démarrage</td>
<td></td>
</tr>
<tr>
<td>Retour d’info. arrêt démarreur</td>
<td>Point de consigne pour la vitesse.</td>
</tr>
<tr>
<td>Retour d’information moteur tournant</td>
<td>Entrée numérique</td>
</tr>
<tr>
<td>Retour d’information moteur tournant</td>
<td>Point de consigne pour la vitesse.</td>
</tr>
<tr>
<td>Retour d’information moteur tournant</td>
<td>Mesure de fréquence supérieure à 32Hz</td>
</tr>
<tr>
<td>Retour d’information moteur tournant</td>
<td>La mesure de fréquence nécessite une mesure de tension égale à 30% de U_{Nom}.</td>
</tr>
<tr>
<td>Retour d’information moteur tournant</td>
<td>La détection de fonctionnement basée sur la mesure de fréquence peut remplacer le retour d’info. moteur tournant basé sur l’entrée du tachymètre, l’entrée numérique ou l’EIC.</td>
</tr>
<tr>
<td>Retour d’information moteur tournant</td>
<td>Point de consigne pour la pression d’huile (menu 6175)</td>
</tr>
<tr>
<td>Retour d’information moteur tournant</td>
<td>EIC (engine communication) (option H5 ou H7)</td>
</tr>
<tr>
<td>Arrêt d’urgence</td>
<td></td>
</tr>
<tr>
<td>Alarm (Alarme)</td>
<td>Alarmes de classes de défaut « shutdown » ou « trip and stop »</td>
</tr>
<tr>
<td>Touche Stop à l’écran</td>
<td>Uniquement en mode semi-auto ou manuel</td>
</tr>
<tr>
<td>Commande d’arrêt Modbus</td>
<td>Mode semi-auto ou manuel</td>
</tr>
<tr>
<td>Entrée binaire d’arrêt</td>
<td>Mode semi-auto ou manuel</td>
</tr>
<tr>
<td>Mode fonctionnement</td>
<td>Il est impossible de passer du mode « fonctionnement » au mode « block » (blocage) tant que le générateur est en marche</td>
</tr>
</tbody>
</table>
Les seules protections susceptibles d’arrêter le générateur/interrompre la séquence de démarrage quand l’entrée « shutdown override » (marche forcée) est activée sont l’entrée numérique « emergency stop » (arrêt d’urgence) et l’alarme « overspeed 2 » (surrégime). Les deux protections doivent appartenir à la classe de défaut « shut down ».

Points de consigne associés à la séquence de démarrage
- Alarme d’échec de la montée en puissance (4530 Crank failure)
 Quand le MPU est choisi comme retour d’information moteur tournant primaire, cette alarme se déclenche si la vitesse de rotation pré-réglée n’est pas atteinte avant l’expiration de la temporisation.

- Echec retour d'information moteur tournant (4540 Run feedb. fail)
 Si le fonctionnement est détecté sur la base de la fréquence (choix secondaire), mais que le retour d’information principal, par exemple une entrée numérique, n’a pas détecté d’activité, cette alarme se déclenche. La temporisation à définir est le temps entre la détection moteur tournant secondaire et le déclenchement de l’alarme.

- Echec Hz/V (4560 Hz/V failure)
 Si la fréquence et la tension n’ont pas atteint les limites prédéfinies dans le menu 2110 après réception du retour d’information moteur tournant, cette alarme se déclenche après expiration de la temporisation.

- Alarme d’échec de démarrage (4570 Start failure)
 Cette alarme se déclenche si le générateur n’a pas démarré après un certain nombre de tentatives défini dans le menu 6190.

- Préparation au démarrage (6180 Starter)
 Préparation normale : La temporisation de préparation au démarrage peut être à des fins de préparation de démarrage, par exemple lubrification ou pré-chauffage. Le relais de préparation au démarrage est activé quant la séquence de démarrage est amorcée, et désactivé quant le relais de démarrage est activé. Si la temporisation est réglée sur 0.0 sec., la fonction de préparation au démarrage est désactivée.

 Préparation prolongée : La préparation prolongée active le relais de préparation au démarrage quand la séquence de démarrage est amorcée, et celui-ci restera activé après l’activation du relais de démarrage, jusqu’à expiration du délai choisi. Si le temps de préparation prolongée dépasse le temps prévu pour le démarrage (START ON time), le relais de préparation au démarrage est désactivé quand le relais de démarrage est désactivé. Si la temporisation est réglée sur 0.0 sec, la fonction de préparation prolongée au démarrage est désactivée.

 Start ON time: Le démarreur tourne pendant cet intervalle.

 Start OFF time: Pause entre deux tentatives de démarrage.
4.13.6 Séquence d’arrêt (STOP)
Les schémas ci-dessous illustrent la séquence d’arrêt.

La séquence d’arrêt est initiée à la suite de toute commande d’arrêt. Elle inclut le temps de refroidissement qu’il s’agisse d’un arrêt normal ou d’un arrêt contrôlé.
La séquence d’arrêt ne peut être interrompue que pendant la période de refroidissement. L’interruption peut avoir lieu dans les situations suivantes :

<table>
<thead>
<tr>
<th>Événement</th>
<th>Commentaire</th>
</tr>
</thead>
<tbody>
<tr>
<td>Touche START actionnée</td>
<td>Mode semi-auto: Le moteur tourne au ralenti</td>
</tr>
<tr>
<td>Démarrage du PMS</td>
<td>Mode auto : Le point de consigne pour le démarrage du générateur en veille suivant a été dépassé</td>
</tr>
<tr>
<td>Touche GB CLOSE actionnée</td>
<td>Mode semi-auto uniquement</td>
</tr>
<tr>
<td>Blackout à l’armoire principale</td>
<td>Activée en mode semi-auto, auto, ou de test</td>
</tr>
</tbody>
</table>

Lorsque le moteur est arrêté, la sortie analogique du régulateur de vitesse est ré-initialisée à la valeur décalée si l’option E1, E2, EF2 ou EF4 est choisie. Se référer aux descriptions des options mentionnées.

4.13.7 Points de consigne liés à la séquence d’arrêt

- Echec arrêt (4580 Stop failure)
 Une alarme d’échec de l’arrêt apparait s’il reste un retour d’information moteur tournant principal, ou de la tension ou de la fréquence sur le générateur après expiration de la temporisation définie dans ce menu.

- Arrêt (6210 Stop)
 Refroidissement: Le temps de refroidissement.
 Arrêt prolongé: Le délai entre la fin d’un retour d’information moteur tournant et la possibilité d’une nouvelle séquence de démarrage.

Si le temporisateur de refroidissement est réglé à 0.0s, la séquence de refroidissement sera infinie.

4.13.8 Séquences du disjoncteur

Les séquences du disjoncteur sont activées en fonction du mode sélectionné :
Avant de fermer les disjoncteurs, la tension et la fréquence doivent être vérifiées. Les seuils sont choisis dans le menu 2110 Sync. blackout.

4.13.9 7080 TB control (EDG uniquement)

En cas de blackout sur le jeu de barres principal, le système fait initialement démarrer des générateurs principaux supplémentaires pour faire face à la situation. En cas d’impossibilité, et sous réserve que l’EDG soit en mode AUTO, la séquence d’événements suivante intervient:

- Le disjoncteur de couplage s’ouvre.
- l’EDG démarre.
- Une fois que la tension et la fréquence du générateur ont atteint les limites prédéfinies (2110 sync. blackout), le disjoncteur de l’EDG se ferme.

Quand un ou plusieurs générateurs principaux sont de nouveau disponibles, ils sont démarrés. Le premier générateur réactive le JdB, les générateurs suivants se synchronisent.

Lorsque le jeu de barres principal est sous tension, l’EDG se déconnecte s’il est en mode AUTO :

- Le disjoncteur de couplage est synchronisé.
- L’EDG est délesté et son disjoncteur s’ouvre.
- L’EDG refroidit et s’arrête.
5. Paramétrage de l'application

5.1 Paramétrage initial de l'application

L’application PPM-3 peut être configurée via l’affichage PPM-3 ou en utilisant l’utilitaire (USW) de DEIF.

5.1.1 Configuration du type d'unité

Accéder au menu 9100 avec la touche JUMP. Choisir un des types PPM-3 suivants:

1. Unité DG
2. Unité SG
3. Unité SC
4. Unité BTB
5. Unité EDG

Ce réglage est normalement effectué en usine. S’il est modifié, l’appareil revient aux réglages usine. Il faut donc effectuer ce réglage avant tout autre.

Accéder au menu 9170 avec la touche JUMP. Choisir "can protocol 2" sauf si l’unité PPM-3 doit être intégrée dans un système utilisant SW 2.xx.x. Dans ce cas, choisir "can protocol 1".

Un alarme s’affiche si le protocole CAN 2 est nécessaire.

5.1.2 Configuration via l'utilitaire PC

Dans l’utilitaire, l’ID de communication doit être configurée pour chaque unité PPM-3. Dans la capture d'écran ci-dessous, l'ID de communication interne est définie à 1.

<table>
<thead>
<tr>
<th>Category</th>
<th>Channel</th>
<th>Text</th>
<th>Address</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comm</td>
<td>7531</td>
<td>Int. comm. ID</td>
<td>558</td>
<td>1</td>
</tr>
<tr>
<td>Comm</td>
<td>7533</td>
<td>Miss. all units</td>
<td>598</td>
<td>N/A</td>
</tr>
<tr>
<td>Comm</td>
<td>7534</td>
<td>Fatal CAN error</td>
<td>599</td>
<td>N/A</td>
</tr>
<tr>
<td>Comm</td>
<td>7535</td>
<td>Any DG missing</td>
<td>570</td>
<td>N/A</td>
</tr>
<tr>
<td>Comm</td>
<td>7536</td>
<td>Any mains miss.</td>
<td>571</td>
<td>N/A</td>
</tr>
<tr>
<td>Comm</td>
<td>7581</td>
<td>Any BTB miss.</td>
<td>1133</td>
<td>N/A</td>
</tr>
</tbody>
</table>

La numérotation des ID de communication doit toujours partir du nombre le plus petit, de sorte que l’application comprenne toujours un DG avec l’ID1. Il en est de même avec les unités SG/SC où la numérotation commence avec l’ID17 et les unités BTB où la numérotation commence avec l’ID33.

5.1.3 Configuration de l'application

L’application est configurée avec l’utilitaire USW.
Choisir une nouvelle application

Paramétrage de la boîte de dialogue suivante.
Description

<table>
<thead>
<tr>
<th>Product type</th>
<th>Choisir PPM-3.</th>
<th>L’autre possibilité, «AGC», est un système de gestion de l’énergie pour installations terrestres.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plant type</td>
<td>Choisir "standard".</td>
<td>Utiliser "standard" pour une application de gestion de l'énergie.</td>
</tr>
<tr>
<td>Configuration selection</td>
<td>Le PPM-3 peut comprendre 4 applications. L’une d’elles peut être active. Saisir un nom pour votre application.</td>
<td>Cliquer sur le champ «Active» ou modifier le choix dans le menu 9160.</td>
</tr>
<tr>
<td>Bus tie options</td>
<td>Choisir «Wrap busbar» si les BTB sont reliés en boucle.</td>
<td></td>
</tr>
<tr>
<td>CAN line options</td>
<td>CAN line 1: connexion A1 - A3, CAN line 2: connexion B1 - B3</td>
<td>Passer ensuite à l’écran de paramétrage par section.</td>
</tr>
</tbody>
</table>
Pour chaque section, on indique la présence d’un générateur, celle d’un alternateur attelé et/ou d’une connexion à quai, ainsi que le nombre et le type de disjoncteurs.

5.2 Retirer une unité de l'application

Si une ou plusieurs unités doivent être retirées du système de gestion de l'énergie, les possibilités suivantes existent, en fonction de la situation.

5.2.1 Alimentation auxiliaire OFF

L'alimentation auxiliaire doit être débranchée de l'unité. Cela signifie qu’une alarme CANbus est visible sur les autres unités PPM-3. Par exemple, pour une installation avec 2 DG où l’ID2 a été arrêtée, on voit les alarmes suivantes.

<table>
<thead>
<tr>
<th>Alarmes</th>
<th>Unité en fonctionnement (ID1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alarme de communication</td>
<td>CAN ID 2 MISSING</td>
</tr>
<tr>
<td>Menu 7533</td>
<td>Miss. all units</td>
</tr>
<tr>
<td>Menu 7535</td>
<td>Any DG missing</td>
</tr>
</tbody>
</table>

Ces alarmes seront présentes en permanence pendant la panne. Une reconfiguration de l'installation est nécessaire pour faire disparaître les alarmes.

Le mode de fonctionnement change en fonction du paramétrage du menu du type de défaut CAN (menu 7532).
Quand l’unité est reconnectée, l’ID est automatiquement réactivé auprès des autres unités dès que son ID est reconnu. Si l’unité reconnectée est une nouvelle unité avec les réglages d’usine, le message d’erreur « Duplicate CAN ID » apparaît. Quand un ID est attribué à la nouvelle unité, et que cet ID est déjà actif dans une autre unité, le message d’erreur ‘CAN ID not available’ s’affiche, et l’ID revient à sa valeur d’origine.

5.2.2 Alimentation auxiliaire ON

Si il y a une panne sur les lignes CANbus d’une unité, par exemple si une panne se déclare à l’ID2, on observe les alarmes suivantes:

<table>
<thead>
<tr>
<th>Alarmes</th>
<th>Unité défectueuse</th>
<th>Unité en fonctionnement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alarme de communication</td>
<td>CAN ID 1 MISSING</td>
<td>CAN ID 2 MISSING</td>
</tr>
<tr>
<td>Menu 7533</td>
<td>Miss. all units</td>
<td>Miss. all units</td>
</tr>
<tr>
<td>Menu 7535</td>
<td>Any DG missing</td>
<td>Any DG missing</td>
</tr>
</tbody>
</table>

Si l’alimentation auxiliaire d’une unité dont le CANbus ne fonctionne pas est connectée, un mode autre que AUTO peut être choisi. Dans ce cas le générateur ne sera pas inclus dans le système de gestion de l’énergie.

Le démarrage automatique ou semi-automatique est possible si le mode est changé à SEMI ou AUTO, sauf quand le mode SWBD est choisi sur une unité PPM-3 DG. Dans ce cas, le GB peut être fermé sans l’autorisation du système de gestion de l’énergie, mais uniquement manuellement sur l’armoire.

5.3 Gestion des pannes de CANbus

5.3.1 Mode d’échec CAN

En cas d’une panne sur le CAN interne qui contrôle la gestion de l’énergie, le système peut être configuré de différentes façons. C’est dans le menu 7530 que la réaction du système en cas d’une panne CAN est déterminée.

1. Si “SWBD” est choisi, toutes les unités PPM-3 passent en mode SWBD. Les régulateurs sont inopérants, et il sera seulement possible de fermer les disjoncteurs manuellement sur l’armoire.

Exemple 1:

- Il y a rupture de câble sur la ligne CAN entre ID1 et ID2.
- Les deux générateurs sont en marche et tous les disjoncteurs sont fermés.

En cas de rupture de câble, les régulateurs des deux générateurs s’arrêtent, mais ils restent connectés. Comme les générateurs n’ont pas d’informations l’un sur l’autre, à terme un blackout pourrait se produire, car il n’y a aucune répartition de charge entre eux.

Si par exemple 6 générateurs sont îlotés et que la rupture de câble CAN intervient entre ID3 et ID4, la répartition de charge entre tous les générateurs sera quand même désactivée, puisqu’ils ont été forcés en contrôle manuel sur l’armoire.

Si l’erreur CAN se produit quand aucun générateur n’est en marche, le système tout entier sera bloqué, et aucun générateur ne pourra être démarré tant que l’erreur CAN n’a pas été corrigée.
2. Si "SEMI-AUTO" est choisi, toutes les unités PPM passent en mode SEMI-AUTO. Ainsi, les régulateurs continuent à répartir la charge entre les générateurs qui sont toujours « visibles » sur le CAN de communication interne. Donc dans l'exemple avec 6 générateurs, la répartition de charge continue entre les unités qui sont toujours connectées (ID 1 - ID 3 et ID 4 - ID 6).

S'il y a une erreur de CANbus sur les deux lignes CANbus et qu'aucun disjoncteur n'est fermé, il devient possible de fermer deux disjoncteurs sur le même JdB simultanément, ce qui pourrait être fatal à tout le système.

3. Si « No mode change » est choisi, toutes les unités PPM-3 gardent le mode dans lequel elles étaient avant la panne.

Ce réglage permet de garder le système en mode Auto en cas de panne de CAN, mais l'unité défectueuse ne fait plus partie de la gestion de l'énergie, puisqu'elle ne peut pas transmettre ou recevoir des messages d'état et des commandes via le CANbus.

Si ce réglage est sélectionné, il est conseillé d'utiliser les paramétrages de classe de défaut pour déconnecter les unités défectueuses (voir 'Classe de défaut CANbus' dans ce chapitre).

S'il y a une erreur de CANbus sur les deux lignes CANbus et qu'aucun disjoncteur n'est fermé, il devient possible de fermer deux disjoncteurs sur le même JdB simultanément, ce qui pourrait être fatal à tout le système.

5.3.2 Communication CANbus redondante
Il est possible d'utiliser 2 lignes de communication CANbus : CAN I/F 1 (A1/A2/A3) et CAN I/F 2 (B1/B2/B3). Ainsi, il y aura communication redondante, et si une des lignes CANbus est endommagée, l’application restera en mode AUTO avec ses fonctionnalités préservées.

5.3.3 Alarmes CANbus
Les alarmes suivantes peuvent s'afficher sur une unité PPM-3 en cas de défaillance de communication de CANbus:

- CAN1 ID X MISSING
 L'unité PPM-3 a perdu la communication CANbus avec un ou plusieurs ID CAN sur le CANbus I/F 1.

- CAN1 SG X MISSING
 L'unité PPM-3 a perdu la communication CANbus avec l'unité PPM-3 SG sur le CANbus I/F 1.

- CAN1 BTB X MISSING
 L'unité PPM-3 a perdu la communication CANbus avec l'unité PPM-3 BTB sur le CANbus I/F 1.

- CAN2 ID X MISSING
 L'unité PPM-3 a perdu la communication CANbus avec un ou plusieurs ID CAN sur le CANbus I/F 2.

- CAN2 SG X MISSING
 L'unité PPM-3 a perdu la communication CANbus avec l'unité PPM-3 SG sur le CANbus I/F 2.

- CAN2 BTB X MISSING
 L'unité PPM-3 a perdu la communication CANbus avec l'unité PPM-3 BTB sur le CANbus I/F 2.
- **MISSING ALL UNITS**
 L’unité PPM-3 a perdu la communication CANbus avec toutes les autres unités. La classe de défaut définie dans le menu 7533 est exécutée.

- **FATAL CAN ERROR**
 L’unité PPM-3 a perdu la communication CANbus avec plus d’un ID CAN sur la ligne CANbus. La classe de défaut définie dans le menu 7534 est exécutée.

- **ANY DG MISSING**
 L’unité PPM-3 a perdu la communication CANbus avec un des ID CAN de générateur sur la ligne CANbus. La classe de défaut définie dans le menu 7535 est exécutée.

- **ANY SG MISSING**
 L’unité PPM-3 a perdu la communication CANbus avec un des autres ID CAN d’alternateur attelé sur la ligne CANbus. La classe de défaut définie dans le menu 7536 est exécutée.

- **ANY BTB MISSING**
 L’unité PPM-3 a perdu la communication CANbus avec un des ID CAN BTB sur la ligne CANbus. La classe de défaut définie dans le menu 7536 est exécutée.

5.3.4 Classe de défaut CANbus
Le menu 7530 permet de paramétrer la classe de défaut des alarmes CANbus suivantes:

- Missing all units
- Fatal CAN error
- Any DG missing
- Any SG missing

En utilisant ces réglages, il est possible de débrancher les unités défaillantes et ainsi de garder le système en mode AUTO (en fonction du réglage 7532).

5.4 Relais

5.4.1 Paramétrage des relais
Le PPM-3 dispose de plusieurs sorties relais. Chacun de ces relais peut avoir une fonction spécifique correspondant aux besoins de l’application. Le paramétrage s’effectue dans le menu de configuration des E/S (menu 5000-5270).

Fonctions des relais
Six fonctions sont disponibles:
<table>
<thead>
<tr>
<th>Fonction</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relais d'alarme NO</td>
<td>Le relais reste activé jusqu'à ce que l'alarme ayant déclenché l'activation soit acquittée et éteinte. Le LED d'alarme est clignotant ou fixe, en fonction de l’état d’acquittement.</td>
</tr>
<tr>
<td></td>
<td>Le relais est activé à la limite du point de consigne. Aucune alarme n'apparaît quand les deux sorties (OA/OB) de l'alarme sont accordées au relais de seuil. Après le retour à la normale, le relais est désactivé à expiration de la temporisation "OFF delay". La temporisation d’arrêt est réglable.</td>
</tr>
<tr>
<td></td>
<td>La sortie est activée pour toute alarme. Pour une description détaillée, voir section « Sortie de l’avertisseur sonore ».</td>
</tr>
<tr>
<td>Relais de sirène</td>
<td>Cette sortie est activée par toutes les alarmes, comme "Horn output" (sortie de l’avertisseur sonore). Si ce relais est ON, et qu'une autre alarme est activée, une réinitialisation de courte durée est activée.</td>
</tr>
<tr>
<td>Relais d'alarme NC</td>
<td>Le relais reste activé jusqu’à ce que l’alarme ayant déclenché l’activation soit acquittée et éteinte. Le LED d’alarme est clignotant ou fixe, en fonction de l’état d’acquittement.</td>
</tr>
<tr>
<td>Alarme commune</td>
<td>Cette sortie active toutes les alarmes, comme la sortie de l’avertisseur sonore (Horn output). Si ce relais est ON, et qu'une autre alarme est activée, une réinitialisation de courte durée est activée. L’alarme commune est activée tant qu'il y a une alarme activée - même si cette alarme est acquittée.</td>
</tr>
</tbody>
</table>

5.5 Auto-contrôle

5.5.1 Auto-contrôle

Le PPM-3 dispose d’une fonction d’auto-contrôle et d’une sortie relais d’état associée. La sortie relais est configurée 24V DC/1 A et normalement excitée.

L’auto-contrôle surveille l’exécution du programme. Par contre, dans le cas très rare d’une panne de microprocesseur, la fonction d’auto-contrôle désactive la sortie relais.

Il faut alors utiliser la sortie relais d’état pour effectuer l’action appropriée. Habituellement, il s’agit d’arrêter le générateur puisqu’il fonctionne sans contrôle ni protection.

En effet, les protections du PPM-3 sont inopérantes quand la fonction d’auto-contrôle désactive le relais d’état.

5.6 Mot de passe

5.6.1 Mot de passe
L'unité comprend trois niveaux de mot de passe. Tous les niveaux peuvent être réglés dans l'utilitaire PC USW.

Niveaux de mot de passe disponibles:

<table>
<thead>
<tr>
<th>Niveau de mot de passe</th>
<th>Réglage usine</th>
<th>Accès</th>
</tr>
</thead>
<tbody>
<tr>
<td>Customer (client)</td>
<td>2000</td>
<td>X</td>
</tr>
<tr>
<td>Service (service)</td>
<td>2001</td>
<td>X X</td>
</tr>
<tr>
<td>Master (maître)</td>
<td>2002</td>
<td>X X X</td>
</tr>
</tbody>
</table>

Un paramètre ne peut pas être saisi avec un niveau de mot de passe trop bas. Mais les paramètres peuvent être affichés sans saisie de mot de passe.

On peut choisir un niveau de mot de passe pour chaque paramètre. Pour ce faire, il faut utiliser l'USW. Saisir le paramètre à configurer et sélectionner le niveau de mot de passe approprié.

![Paramétrage de l'application](image)
Le mot de passe peut aussi être changé dans la visualisation des paramètres, à la colonne « Level ».

![Image de la visualisation des paramètres]

5.6.2 Accès aux paramètres

Pour accéder à la mise à jour des paramètres, le niveau de mot de passe doit être sélectionné :

![Image des menu de sélection de niveau]

Dans le cas contraire, il n'est pas possible de saisir les paramètres.

- Le mot de passe client peut être modifié dans le menu 9116. Le mot de passe de service peut être modifié dans le menu 9117. Le mot de passe maître peut être modifié dans le menu 9118.

- Les mots de passe livrés d'origine doivent être changés si l'utilisateur du générateur n'a pas l'autorisation de modifier les paramètres.

- Il n'est pas possible de changer le mot de passe d'un niveau plus élevé que celui du mot de passe saisi.
6. Fonctions de gestion de l'énergie

6.1 Système multi-maître

Le système de gestion de l'énergie est multi-maître. Dans un système multi-maître, les unités de générateur disponibles contrôlent automatiquement la gestion de l'énergie. Le système n'est donc jamais dépendant d'une seule unité maître.

6.1.1 Unité de commande

Si par exemple l'ID d'une unité est hors service, et qu'il s'agit de l'unité de commande, la prochaine unité disponible reprend les fonctions de commande.

L'unité maître ne peut être choisie par l'opérateur. Elle est automatiquement sélectionnée quand on accède à un paramètre de gestion de l'énergie.

6.2 Marche/arrêt en fonction de la charge

6.2.1 Fonction marche/arrêt en fonction de la charge

La fonction marche/arrêt en fonction de la charge est activée lorsque le mode AUTO est sélectionné. Cette fonction transmet une commande PMS de marche/arrêt, basée sur le calcul du nombre de générateurs nécessaires pour faire face à l'appel de puissance instantané sur le jeu de barres.

La commande PMS marche/arrêt engage chaque générateur dans la procédure de démarrage/d'arrêt selon la priorité de démarrage programmée. Le calcul de la commande marche/arrêt en fonction de la charge est basé sur la comparaison avec les seuils fixés pour le démarrage et l'arrêt.

Cette fonction peut être paramétrée avec un point de consigne pour la puissance nominale (P) ou pour la puissance apparente (S), ainsi que la valeur nominale ou un pourcentage de la puissance.

Le démarrage et l'arrêt en fonction de la charge peuvent être basés au choix sur le calcul de la puissance ou sur le calcul de la puissance disponible.

La méthode la plus facile fait appel au calcul de puissance mais ne convient pas toujours aux systèmes comportant 3 générateurs ou plus en ce qui concerne les économies de carburant et l'optimisation des heures de fonctionnement.

La puissance apparente [S] peut également être utilisée à la place de la puissance active [P].

Enfin, l'opérateur peut choisir d'utiliser les valeurs réelles ou en pourcentage.

6.2.2 Terminologie

La table qui suit liste les abréviations utilisées.
<table>
<thead>
<tr>
<th>Abréviation</th>
<th>Description</th>
<th>Commentaire</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P_{AVAILABLE})</td>
<td>Puissance disponible</td>
<td>(P_{TOTAL} - P_{PRODUCED})</td>
</tr>
<tr>
<td>(P_{TOTAL})</td>
<td>Puissance totale</td>
<td>(\sum P_{NOMINAL}) des gén. en marche avec GB fermé</td>
</tr>
<tr>
<td>(P_{PRODUCED})</td>
<td>Puissance produite</td>
<td></td>
</tr>
<tr>
<td>(P_{NOMINAL})</td>
<td>Puissance nominale</td>
<td></td>
</tr>
<tr>
<td>(P_{NOMINAL-STOP})</td>
<td>Puissance nominale du générateur à arrêter</td>
<td>Fonction de la priorité</td>
</tr>
</tbody>
</table>

Désactivation de l’arrêt en fonction de la charge
Cette fonction peut être désactivée par M-logic, par exemple lors de manoeuvres au port.

Dans l’exemple qui suit, la fonction est activée avec la borne 43. A présent l’opérateur peut activer ou désactiver l’arrêt en fonction de la charge avec un commutateur connecté à la borne 43.

6.2.3 Méthode utilisant la puissance produite
Cette méthode s’applique si le % de puissance est choisi comme base de calcul pour le démarrage et l’arrêt.

Si le % de charge d’un générateur dépasse le point de consigne « start next », la séquence de démarrage du générateur en veille avec la priorité la plus haute sera amorcée.

Si le % de charge d’un générateur tombe en dessous du point de consigne « stop next », la séquence d’arrêt du générateur en marche avec la priorité la plus basse sera amorcée.

6.2.4 Méthode utilisant la puissance disponible
Cette méthode s’applique si \(P \) [kW] ou \(S \) [kVA] sont choisis comme base de calcul pour le démarrage et l’arrêt.

Indépendamment de ce choix (\(P \) [kW] ou \(S \) [kVA]), la fonctionnalité est fondamentalement identique, c’est pourquoi son principe sera expliqué pour la fonction démarrage en fonction de la charge avec la puissance nominale \(P \) choisie comme base de calcul.

Habituellement, le choix se porte sur le point de consigne de la puissance apparente quand la charge connectée est de nature inductive et que le facteur de puissance est inférieur à 0.7.
Description
Le schéma suivant illustre les termes utilisés.

Puissance nominale
La puissance nominale est la puissance déclarée du générateur, inscrite sur sa plaque signalétique.

Puissance totale
La puissance totale est la somme des puissances nominales de chaque générateur. Dans l’exemple suivant, l’installation comprend 3 DG :

DG1 = 1500 kW
DG2 = 1000 kW
DG3 = 1000 kW

Pour un total de 3500 kW

Puissance produite
La puissance produite est définie comme la charge présente au jeu de barres. Dans l’exemple ci-dessus, la puissance produite est représentée par l’aire hachurée et la puissance totale des trois générateurs = 2450 kW.

Puissance disponible
La puissance disponible est la différence entre la puissance maximale possible produite par les générateurs et la puissance produite réelle.

Dans l’exemple ci-dessus, l’installation comprend trois générateurs pour une puissance totale de 3500 kW. La charge consomme 2450 kW au total. Puisque la charge totale P_{TOTAL} est de 3500 kW, et que la charge produite P_{PRODUCED} est de 2450 kW, la puissance disponible P_{AVAILABLE} est de 1050 kW, ce qui veut dire que les générateurs pourraient supporter cette charge si elle venait à s’ajouter sur le jeu de barres.
6.2.5 Principe de la puissance disponible
Un générateur fonctionne et alimente la charge. La charge augmente, ce qui signifie que la puissance disponible diminue. À un certain moment, la charge aura tellement augmenté que seule une petite quantité de puissance sera disponible et que le générateur suivant dans l'ordre de priorité sera démarré afin d'accroître la puissance disponible.

Quand la charge diminue, la puissance disponible augmente. Lorsque la puissance disponible a dépassé le seuil d'arrêt plus la puissance nominale du générateur de dernière priorité, ce dernier est arrêté. Noter que la puissance nominale du générateur qui doit être arrêté s'ajoute au seuil d'arrêt préalablement défini, sinon la puissance disponible retomberait immédiatement en dessous du seuil de démarrage.

Si le seuil de démarrage est fixé à 200 kW ($P_{STOP} = 200$ kW), et que la puissance du générateur de dernière priorité est 1000 kW, il faut que la puissance disponible atteigne 1200 kW, parce que celle-ci sera réduite de 1000 kW immédiatement après l'arrêt du générateur de dernière priorité.

6.2.6 Réglage du démarrage en fonction de la charge par la méthode de la puissance disponible
Dans l'exemple ci-dessous, la puissance disponible est de 200 kW. Quand la charge augmente, la puissance disponible tombe en-dessous du seuil de démarrage. Le générateur en veille démarre quand la temporisation de démarrage a expiré, et après synchronisation, la puissance disponible augmente (dans cet exemple, jusqu'à 500 kW).
6.2.7 Schéma de principe du démarrage en fonction de la charge

6.2.8 Réglage de l'arrêt en fonction de la charge par la méthode de la puissance disponible

Le seuil d’arrêt en fonction de la charge est la puissance disponible la plus élevée admissible pour l’installation. Si sa valeur est atteinte ou dépassée, une commande d’arrêt est envoyée au générateur en marche suivant dans l’ordre d’arrêt en fonction de la priorité.

L’opérateur peut régler les points de consigne et la temporisation suivants, qui contrôlent la transmission de la commande d’arrêt PMS.
Le blocage de la fonction arrêt en fonction de la charge peut être effectué au moyen de deux fonctionnalités :

- le point de consigne (8035) quand un gros consommateur se connecte au jeu de barres,
- l’entrée binaire “load-dependent stop block” (borne 53 du DG 1), après configuration.

Le blocage de la fonction arrêt en fonction de la charge au moyen du point de consigne est automatiquement ignoré s’il n’y a pas de gros consommateur (HC) connecté au jeu de barres. Le blocage par l’entrée binaire reste activé tant que l’entrée est programmée. Un message d’information sur l’écran d’affichage indique que la temporisation de l’arrêt en fonction de la charge est active.

Dans l’exemple ci-dessous, la puissance disponible est de 500 kW. Quand la charge diminue, la puissance disponible augmente jusqu’à 750 kW. Le PPM-3 calcule à présent ce qui se passe si le générateur avec la dernière priorité s’arrête. Dans cet exemple, la puissance du générateur en question est de 400 kW : il peut être arrêté, parce que la puissance disponible sera toujours supérieure au seuil d’arrêt.

La différence entre le seuil d’arrêt et la puissance disponible est maintenant égale à 50 kW. Par conséquent, le générateur qui a maintenant la dernière priorité ne peut être arrêté que si sa puissance est égale à 50 kW !

En cas de modification de l’ordre de priorité, noter que : Si la modification ne s’opère pas comme prévu, c’est parce que la fonction d’arrêt en fonction de la charge ne pourrait pas arrêter le DG avec la priorité la plus basse après avoir démarré le nouveau DG de priorité maximale. La conséquence serait de faire fonctionner deux DG avec une faible charge au lieu d’un.
6.2.9 Fenêtre de puissance, méthode de la puissance disponible

L’écart entre les seuils programmés de démarrage et d’arrêt en fonction de la charge constitue l’hystérésis de puissance entre le démarrage et l’arrêt. C’est ce qu’illustre le diagramme ci-dessous.
6.2.10 Schéma de principe de l’arrêt en fonction de la charge

6.3 Répartition de charge

Quand la communication du système de gestion de l’énergie fonctionne, la répartition de charge entre les générateurs est réalisée par communication CANbus entre les unités PPM-3.

Si les deux lignes CANbus sont déconnectées ou défaillantes, les unités PPM-3 passent à un mode de répartition de charge analogique utilisant les bornes 37/38/39. La gestion de l'énergie est perdue, mais les générateurs déjà en marche restent stables.

La ligne analogique de répartition de charge peut être utilisée comme ligne de remplacement pour la répartition de charge quand elle est connectée. Cette fonction est en standard sur le PPM-3.

La ligne de répartition de charge analogique permet à l'unité de partager la charge active réactive (option D1) équitablement en pourcentage de la puissance nominale. La répartition de charge analogique est activée quand les deux lignes internes CANbus sont déconnectées, que le générateur fonctionne en mode îloté, et que le disjoncteur du générateur est fermé.

Un signal de tension équivalent à la charge produite par le générateur est envoyé à la ligne de répartition de charge. Quand la charge du générateur est 0%, 0V DC sont envoyés à la ligne de répartition de charge. Quand la charge est à 100%, la tension est de 4 V DC.

Ceci est illustré dans le diagramme ci-dessous.

La ligne de répartition de charge active est illustrée ci-dessus, et les caractéristiques de la ligne de répartition de charge réactive sont équivalentes.

6.3.1 Principe de fonctionnement

L'unité de contrôle fournit une tension sur la ligne de répartition de charge égale à la charge réelle. Cette tension provient d'un transducteur de puissance interne. Simultanément, la tension réelle sur la ligne de répartition de charge est mesurée.
Si la tension mesurée est supérieure à celle du transducteur de puissance interne, l’unité augmente sa charge pour atteindre la tension sur la ligne de répartition de charge. Si la tension mesurée est inférieure à celle du transducteur de puissance interne, l’unité diminue sa charge pour atteindre la tension sur la ligne de répartition de charge.

La tension sur la ligne de répartition de charge sera différente de celle du transducteur uniquement si deux unités de contrôles ou plus sont connectées à cette ligne.

Pour activer / désactiver la ligne de répartition de charge, il faut utiliser la catégorie M-Logic "Outputs/Inhibits" (Sorties/Inhibitions de sortie) dans l’utilitaire USW.

Pour améliorer la prise en charge de plusieurs générateurs dans la même application, la ligne de répartition de charge analogique sert de système de secours pour la gestion de l’énergie. Ainsi, si la ligne de répartition de charge analogique et la gestion de l’énergie sont toutes deux disponibles pour la même unité, la répartition de charge est gérée prioritairement par communication CANbus, mais en cas d’erreur CANbus la répartition de charge continue sur la ligne de répartition de charge analogique. Les générateurs continuent à fonctionner normalement bien que la gestion de l’énergie soit perdue.

Exemple 1:
Deux générateurs tournent en parallèle. Les charges sont les suivantes:

<table>
<thead>
<tr>
<th>Générateur</th>
<th>Charge actuelle</th>
<th>Tension sur ligne de répartition de charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Générateur 1</td>
<td>100%</td>
<td>4V DC</td>
</tr>
<tr>
<td>Générateur 2</td>
<td>0%</td>
<td>0V DC</td>
</tr>
</tbody>
</table>

Le niveau de tension sur la ligne de répartition de charge peut être calculé comme suit :

\[U_{LS} = \frac{(4 + 0)}{2} = 2.0V \text{ DC} \]

Le générateur 1 va maintenant diminuer la charge pour atteindre la tension sur la ligne de répartition de charge (ici 2.0V DC). Le générateur 2 va augmenter la charge pour atteindre les 2.0V DC.

La répartition de charge est maintenant:

<table>
<thead>
<tr>
<th>Générateur</th>
<th>Charge actuelle</th>
<th>Tension sur ligne de répartition de charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Générateur 1</td>
<td>50 %</td>
<td>2.0V DC</td>
</tr>
<tr>
<td>Générateur 2</td>
<td>50 %</td>
<td>2.0V DC</td>
</tr>
</tbody>
</table>

Exemple 2:
Si les deux générateurs n’ont pas la même puissance, la répartition de charge s’effectue en fonction d’un pourcentage de la puissance nominale.

Deux générateurs alimentent le jeu de barres. La charge totale est de 550 kW.

<table>
<thead>
<tr>
<th>Générateur</th>
<th>Puissance nominale</th>
<th>Charge actuelle</th>
<th>Tension sur ligne de répartition de charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Générateur 1</td>
<td>1000 kW</td>
<td>500 kW</td>
<td>2.0V DC</td>
</tr>
<tr>
<td>Générateur 2</td>
<td>100 kW</td>
<td>50 kW</td>
<td>2.0V DC</td>
</tr>
</tbody>
</table>

Chaque générateur fournit 50% de sa puissance nominale.
6.4 Points de consigne analogiques externes

Le générateur peut être contrôlé par des points de consigne internes ou externes. Les points de consigne externes sont activés avec une entrée numérique.

Cinq entrées différentes peuvent être sélectionnées en utilisant l'utilitaire PC USW:

<table>
<thead>
<tr>
<th>Entrée</th>
<th>Condition d'activation point de consigne externe</th>
<th>Commentaire</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ctrl fréquence ext.</td>
<td>Générateur autonome ou GB ouvert</td>
<td></td>
</tr>
<tr>
<td>Ctrl puiss. ext.</td>
<td>En parallèle avec PPM-3 alternateur attelé / connexion à quai</td>
<td></td>
</tr>
<tr>
<td>Ctrl tension ext.</td>
<td>Générateur autonome ou GB ouvert</td>
<td>Nécessite l’option D1</td>
</tr>
<tr>
<td>Ctrl PF ext.</td>
<td>En parallèle avec PPM-3 alternateur attelé / connexion à quai</td>
<td></td>
</tr>
<tr>
<td>Ctrl VAr ext.</td>
<td>En parallèle avec PPM-3 alternateur attelé / connexion à quai</td>
<td></td>
</tr>
</tbody>
</table>

Les points de consigne du contrôleur ne seront pas pris en compte si la condition de fonctionnement n’est pas présente. Par exemple, il n’est pas possible d’utiliser le contrôle de fréquence en cas de fonctionnement en parallèle avec le jeu de barres.

Le tableau suivant indique les points de consigne possibles.

<table>
<thead>
<tr>
<th>Contrôleur</th>
<th>Tension en entrée</th>
<th>Description</th>
<th>Commentaire</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fréquence</td>
<td>+/-10V DC</td>
<td>f(_\text{NOM}) +/-10%</td>
<td></td>
</tr>
<tr>
<td>Puiss.</td>
<td>+/-10V DC</td>
<td>P(_\text{NOM}) +/-100%</td>
<td></td>
</tr>
<tr>
<td>Tension</td>
<td>+/-10V DC</td>
<td>U(_\text{NOM}) +/-10%</td>
<td></td>
</tr>
<tr>
<td>Puissance réactive</td>
<td>+/-10V DC</td>
<td>Q(_\text{NOM}) +/-100%</td>
<td></td>
</tr>
<tr>
<td>Facteur de puissance</td>
<td>0…10V DC</td>
<td>1.0…0.6</td>
<td></td>
</tr>
</tbody>
</table>

Les points de consigne externes peuvent être utilisés pour tous les modes de générateur, quand le mode auto ou semi-auto est choisi.

Un nombre limité d’entrées numériques sont disponibles pour l’unité standard. L’unité doit être installée avec un nombre suffisant d’options pour avoir le nombre d’entrée numériques souhaité.

Si l’unité dispose de l’option H2 (Modbus RS485 RTU), les points de consigne externes peuvent être contrôlés à partir des registres de contrôle dans le protocole Modbus. Se référer au manuel ‘Description of option H2’ pour toute information complémentaire.

6.5 Paramètres

Les paramètres suivants sont associés à cette fonction: 6380 Load share out et 6390 Load share type.
Pour toute information complémentaire, voir le document "PPM-3 Parameter List", n° 4189340561.
6.6 Démarrage en cas de blackout

6.6.1 Démarrage en cas de blackout
Si le système de gestion de l’énergie fonctionne et que la communication CAN interne entre toutes les autres unités est sans défaut, la gestion du blackout est contrôlée par le système de gestion de l’énergie.

La séquence blackout commence quand le système de gestion de l’énergie reçoit de chacune des unités présentes, via la communication CAN interne, un signal « jeu de barres mort ».

En cas d’interruption de la communication CANbus entre les unités, une entrée binaire dénommée « blackout » peut être configurée sur n’importe laquelle des unités DG. Le signal en entrée provient d’un dispositif externe (par ex. un relais de sous-tension). Lorsque cette entrée est activée alors que la communication CAN est désactivée, le générateur diesel en question démarre et se connecte au jeu de barres.

L’opérateur peut définir les paramètres suivants :

- Nombre de générateurs à démarrer en cas de blackout
- Changement automatique du mode de fonctionnement de l’installation, vers les modes SEMI-AUTO ou AUTO
- Tentatives de démarrage et de connexion en cas de court-circuit et de blackout

L’unité transmet un signal interne « jeu de barres mort » lorsqu’elle a enregistré sans interruption pendant une seconde les conditions suivantes :

- La tension entre phases maximale au jeu de barres (U_{L-L}) est inférieure à 20% de la valeur nominale
- Le disjoncteur du générateur correspondant est en position OFF
- Aucune/une alarme de court-circuit est activée (paramétrable)

Une alarme de court-circuit non acquittée dans n’importe quelle unité peut bloquer l’ensemble de la séquence de démarrage en cas de blackout (en fonction des valeurs sélectionnées).

En pareil cas, l’opérateur doit acquitter l’alarme de court-circuit de façon à relancer la séquence blackout.

Si l’une ou plusieurs des conditions déclenchantes mentionnées plus haut disparaissent, la détection « jeu de barres mort » cesse immédiatement.

Quand le blackout a été établi, la séquence de démarrage en cas de blackout commence.

L’activation de la séquence de démarrage en cas de blackout n’est possible que si au moins un des générateurs est sous contrôle du PMS et prêt pour le démarrage PMS (« ready for PMS start »), ou si un alternateur attelé / une connexion à quai est paramétré en "auto close ON" (8891).
La séquence de démarrage en cas de blackout amorce la séquence de démarrage automatique, qui lance les générateurs de première et de seconde priorité (si cette option est choisie), lesquels sont en même temps « ready for PMS start ».

Si deux générateurs ont été choisis :
1. L’unité DG qui obtient la première un retour d’information moteur tournant normal et une tension/fréquence normale sur le générateur ferme immédiatement le disjoncteur (après réception d’un signal d’acquittement de l’unité de gestion de l’énergie).
 - Si la fermeture du disjoncteur n’a pas lieu, l’autre générateur démarré en situation de blackout reçoit l’ordre de fermer ce disjoncteur sans synchronisation.
2. Le second générateur démarré en situation de blackout lance la synchronisation du disjoncteur du générateur environ 2 sec. après détection d’une tension et d’une fréquence appropriées au niveau du jeu de barres.
3. Si l’un des deux générateurs choisis tombe en panne pendant la séquence de démarrage, la commande de démarrage du système de gestion de l’énergie est transférée au générateur en veille suivant, pendant toute la durée du blackout.
4. **Quand un générateur est connecté avec succès au jeu de barres,** la fonction blackout est considérée comme terminée et le système retourne à son mode opératoire « normal ».

Si le système de gestion de l’énergie est dans l’impossibilité de communiquer avec une unité (ce qu’indique un message d’alarme de communication), le signal en provenance de l’unité défaillante n’est pas nécessaire pour amorer la séquence de démarrage en situation de blackout.
6.6.2 Schéma de principe du démarrage en cas de blackout

6.7 Choix de la priorité

Cinq choix de type de priorité sont possibles. Le sélection du type s’effectue dans le menu 8031.
6.7.1 Manuel
La sélection manuelle donne la possibilité de définir l’ordre de priorité des DG disponibles en choisissant leur numéro, ce qui revient à dire que chaque générateur a toujours une priorité définie.

Le réglage est effectué dans les menus 8080 (P1-P5), 8090 (P6-P11) et 8100 (P12-P16). Dans cet exemple, l’ordre de priorité est DG3, DG1, DG2, DG4.

<table>
<thead>
<tr>
<th>Priorité</th>
<th>Gén.</th>
<th>DG1</th>
<th>DG2</th>
<th>DG3</th>
<th>DG4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Menu 8081</td>
<td>P1</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Menu 8082</td>
<td>P2</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Menu 8083</td>
<td>P3</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Menu 8084</td>
<td>P4</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Ce réglage ne doit être réalisé que sur une seule unité DG. L’ordre de priorité doit ensuite être transmis manuellement aux autres générateurs grâce à la fonction de transmission du menu 8086.

6.7.2 Utilisation de la touche "1st priority" sur l'écran d'affichage
Sélectionner « Manual » dans le menu 8031. L’ordre de priorité peut être choisi en utilisant la touche "1st prior" pour toutes les unités DG en commençant par la dernière.

Exemple:
Dans un système comprenant trois générateurs, l’ordre de priorité demandé est 2-3-1:
1 : Appuyer sur la touche « 1st prior » pour le DG1. Attendre que le LED s’allume.
2 : Appuyer sur la touche « 1st prior » pour le DG3. Attendre que le LED s’allume.
3 : Appuyer sur la touche « 1st prior » pour le DG2. Attendre que le LED s’allume.

La priorité de démarrage 2-3-1 est maintenant enregistrée.

Il est recommandé de placer tous les générateurs en mode Semi-auto pendant la procédure afin d’éviter un démarrage intempestif des générateurs.

6.7.3 Heures de fonctionnement
L’objectif du choix de la priorité en fonction des heures de fonctionnement est de faire tourner chaque générateur pendant approximativement le même nombre d’heures.

Chaque fois que la période définie dans le menu 8111 est écoulée, un nouvel ordre de priorité est déterminé, les générateurs de première priorité démarrent (s’ils ne sont pas déjà en marche) et les générateurs de dernière priorité s’arrêtent.
La procédure de priorité basée sur les heures de fonctionnement peut être mise en œuvre selon deux modalités : absolue ou relative. Le choix détermine si le décalage programmé des heures de fonctionnement est pris en compte dans le calcul de priorité. Le réglage décalé est utilisé par ex. lorsque l’unité PPM-3 est installée sur un vieux générateur qui compte de nombreuses heures de service ou lorsque l’unité PPM-3 est remplacée.

Heures de fonctionnement absolues
Tous les générateurs sont inclus dans la procédure de priorité sur le principe illustré dans le tableau ci-dessous, ce qui implique de faire tourner les générateurs avec le plus faible nombre d’heures de fonctionnement. Cela peut être un inconvénient, par exemple dans les installations comprenant à la fois des générateurs neufs et des générateurs anciens. Dans ce cas, les premières priorités sont attribuées aux générateurs neufs, jusqu’à ce qu’ils atteignent le même nombre d’heures de fonctionnement que les vieux générateurs. Pour éviter cela, on peut utiliser la procédure de priorité appelée heures de fonctionnement relatives.

Le nombre réel d’heures de fonctionnement est saisi dans chaque unité PPM-3 dans les menus 6101 et 6102, en général lors de la mise en service. Le but est de disposer à l’écran du nombre correct d’heures de fonctionnement.

Heures de fonctionnement relatives
Quand cette modalité est sélectionnée, tous les générateurs sont inclus dans la procédure de priorité indépendamment du nombre d’heures de fonctionnement saisi dans les menus 6101 et 6102. Tous les générateurs en mode AUTO sont donc inclus dans la procédure de priorité.

Cette modalité offre la possibilité de ré-initialiser la procédure de priorité. Quand la ré-initialisation est lancée dans le menu 8113, les compteurs d’heures de fonctionnement relatives des unités PPM-3 sont remis à zéro et lors du prochain choix de la priorité, le calcul se basera sur les nouvelles valeurs.

Principe de la procédure de priorité
Le principe de la procédure de priorité est décrit dans le tableau suivant, où les heures de fonctionnement (menu 8111) sont réglées sur 24 heures. Dans cet exemple, la charge ne requiert qu’un seul générateur.

<table>
<thead>
<tr>
<th>Jour</th>
<th>Heures</th>
<th>DG1 (int. ID3)</th>
<th>DG2 (int. ID2)</th>
<th>DG3 (int. ID4)</th>
<th>DG4 (int. ID1)</th>
<th>Commentaire</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lundi</td>
<td>0</td>
<td>1051 h</td>
<td>1031 h</td>
<td>1031 h</td>
<td>1079 h</td>
<td>DG2 démarre car il possède le plus petit numéro d'ID interne</td>
</tr>
<tr>
<td>Mardi</td>
<td>24</td>
<td>1051 h</td>
<td>1055 h</td>
<td>1031 h</td>
<td>1079 h</td>
<td>DG 3 démarre et DG2 s’arrête</td>
</tr>
<tr>
<td>Mercredi</td>
<td>48</td>
<td>1051 h</td>
<td>1055 h</td>
<td>1055 h</td>
<td>1079 h</td>
<td>DG 1 démarre et DG3 s’arrête</td>
</tr>
<tr>
<td>Jeudi</td>
<td>72</td>
<td>1075 h</td>
<td>1055 h</td>
<td>1055 h</td>
<td>1079 h</td>
<td>DG2 démarre car il possède le plus petit numéro d'ID interne et DG1 s’arrête</td>
</tr>
<tr>
<td>Vendredi</td>
<td>96</td>
<td>1075 h</td>
<td>1079 h</td>
<td>1055 h</td>
<td>1079 h</td>
<td>DG 3 démarre et DG2 s’arrête</td>
</tr>
<tr>
<td>Samedi</td>
<td>120</td>
<td>1075 h</td>
<td>1079 h</td>
<td>1079 h</td>
<td>1079 h</td>
<td>DG 1 démarre et DG3 s’arrête</td>
</tr>
<tr>
<td>Dimanche</td>
<td>144</td>
<td>1099 h</td>
<td>1079 h</td>
<td>1079 h</td>
<td>1079 h</td>
<td>DG4 démarre car il possède le plus petit numéro d'ID interne … et ainsi de suite</td>
</tr>
</tbody>
</table>

Le temps défini dans le menu 8111 est l’intervalle entre deux calculs de priorité.
6.7.4 Optimisation de la consommation de carburant

L’objectif de la procédure d’optimisation de la consommation de carburant est de toujours faire fonctionner les générateurs pour une charge donnée selon la meilleure combinaison, en fonction de leur puissance nominale réelle.

Description

La fonction est paramétrée dans les menus suivants :

<table>
<thead>
<tr>
<th>Numéro de menu</th>
<th>Texte</th>
<th>Description</th>
<th>Commentaire</th>
</tr>
</thead>
<tbody>
<tr>
<td>8171</td>
<td>Setpoint</td>
<td>Charge avec économie maximale de carburant (% P\textsubscript{NOM})</td>
<td>Les unités réalisent l’optimisation autour de cette charge</td>
</tr>
<tr>
<td>8172</td>
<td>Swap set-point</td>
<td>Début de l’optimisation</td>
<td>L’amélioration de la puissance nominale doit être supérieure à ce point de consigne pour que l’optimisation de la consommation de carburant commence</td>
</tr>
<tr>
<td>8173</td>
<td>Delay</td>
<td>Temporisation</td>
<td>Une combinaison optimale doit exister pendant cette période avant que l’optimisation commence</td>
</tr>
<tr>
<td>8174</td>
<td>Hour</td>
<td>Heures de fonctionnement</td>
<td>Ecart maximum admissible entre les heures de fonctionnement</td>
</tr>
<tr>
<td>8175</td>
<td>Enable</td>
<td>Activation des heures de fonctionnement</td>
<td>Utilisation des heures de fonctionnement dans le calcul d’optimisation</td>
</tr>
</tbody>
</table>

L’exemple ci-dessous permet de mieux décrire cette fonction. Soient 3 DG :

- DG1 = 1000 kW
- DG2 = 1000 kW
- DG3 = 500 kW

Paramétrage de la fonction d’optimisation de consommation de carburant :

- 8011 Load-dependent stop = 200 kW (+ 10% dans cette fonction)
- 8881 Load-dependent start/stop = kW
- 8882 Load-dependent start/stop = Valeur
- 8171 Setpoint = 100%
- 8172 Swap percentage = 200 kW

Situation 1 :
Les deux générateurs de 1000 kW doivent tourner. La charge est trop importante pour un générateur de 1000kW et un de 500kW.

Situation 2 :
Puisque la charge est réduite à 1400kW, un générateur de 1000kW et un de 500kW seraient suffisants. L’amélioration est de 500kW, ce qui est mieux que 200kW (menu 7672). Le problème est que seuls 100kW seraient disponibles. L’arrêt en fonction de la charge nécessite 220kW, donc aucun échange ne peut intervenir.

Situation 3 :
Maintenant la charge est réduite à 1300kW. Un générateur de 1000kW et un de 500kW seraient suffisants. L'amélioration est de 500kW, ce qui est mieux que 200kW (menu 7672). Le problème est que seuls 200kW seraient disponibles. L’arrêt en fonction de la charge nécessite 220kW, donc aucun échange ne peut intervenir.

Situation 4:
Maintenant la charge est réduite à 1200kW. Un générateur de 1000kW et un de 500kW seraient suffisants. L'amélioration est de 500kW, ce qui est mieux que 200kW (menu 7672). 300 kW seraient disponibles, donc l’arrêt en fonction de la charge n’interfère pas avec l'optimisation de la consommation de carburant.

La procédure d’optimisation de la consommation de carburant est lancée !

Situation 5:
A présent DG3 a démarré et fonctionne en parallèle avec DG1. DG1 fournit 800kW et DG3 400kW. C’est la meilleure combinaison à ce moment-là.
Le point de consigne (menu 8171) en pourcentage est en général fixé à 80-85% pour une économie optimale de carburant.

Heures de fonctionnement
Il est possible de combiner optimisation de la consommation de carburant et heures de fonctionnement, grâce au menu 8175. Si ce réglage est OFF, la fonction d’optimisation de la consommation est active, mais les heures de fonctionnement ne sont pas comprises dans le calcul.
Si la fonction « heures de fonctionnement » est activée, le principe est le suivant : si un générateur atteint le nombre d’heures de fonctionnement prédéfini, il est mis en quarantaine, c’est-à-dire au repos, jusqu’à ce qu’il ait le plus faible nombre d’heures de fonctionnement. L’unique exception à cette règle est l’absence d’autre combinaison : il sera alors utilisé mais restera en quarantaine.

6.7.5 Changement de priorité temporisé
Le changement de priorité temporisé ("delayed priority shift") est une sélection de priorité manuelle effectuée avec le paramètre 8031. Quand il y a changement de priorité, le nouveau choix prend effet quand un démarrage ou un arrêt en fonction de la charge est activé.

6.7.6 Dynamique
La sélection de type "dynamique" attribue la priorité en fonction de l'ordre de connexion et se base sur quelques règles simples.

- Un générateur obtient une priorité basée sur l'ordre dans lequel il se connecte. Ex.: Si un générateur est le troisième à se connecter au jeu de barres, il obtient la troisième priorité.
- Si un disjoncteur s'ouvre, l'unité correspondante aura la dernière priorité.

Lors du retour du réseau, la première priorité est accordée au premier générateur qui se connecte - la seconde au second générateur, etc.

Si la fonction "Delayed priority shift" est demandée dans "Running hours" ou "Dynamic", le paramètre 8023 "Del. Prio shift" doit être utilisé.

6.8 Déconnexion des groupes de charge non essentielle (NEL)
La déconnexion des groupes de charge non-essentielle (Non Essential Load - NEL) est effectuée pour protéger le jeu de barres d'un blackout imminent dû soit à une charge/intensité élevée sur un générateur, soit à une fréquence faible sur le jeu de barres.

La fonctions de déconnexion des groupes NEL est intégrée dans chaque unité DG/SG/SC/EDG. Chaque unité effectue donc la déconnexion des groupes NEL en fonction de son paramétrage spécifique. Mais il est hautement recommandé de paramétrer toutes les unités de la même manière, de façon à obtenir un fonctionnement homogène.

Chaque unité peut déconnecter trois groupes NEL en fonction de :

- La mesure de la charge du générateur (charge élevée et surcharge)
- La mesure de l'intensité sur le générateur et
- La fréquence mesurée sur le jeu de barres

Les groupes de charges sont déconnectés séparément. La déconnexion du groupe n° 1 n’a aucune influence sur celle du groupe n° 2. Seulest la mesure de la fréquence sur le jeu de barres, ou celle de la charge/intensité sur le générateur peuvent entraîner la déconnexion des groupes de charge.

La déconnexion des groupes de charge non essentielle en fonction de la charge d'un générateur en fonctionnement entraîne une réduction de la charge sur le jeu de barres et donc une diminution du pourcentage de charge sur le générateur tournant. Cette opération peut prévenir une situation éventuelle de blackout due à une surcharge du générateur en fonctionnement.

La déconnexion en fonction de l'intensité est sélectionnée dans le cas de charges inductives et de facteur de puissance instable (PF <0.7) quand l'intensité augmente.
La déconnexion des groupes NEL entraîne une réduction de la charge réelle sur le jeu de barres et donc une diminution du pourcentage de charge sur tous les générateurs en marche, ce qui peut empêcher une situation de blackout au jeu de barres.

6.8.1 Déconnexion commune des NEL
Si le paramètre 8970 est à ON, tous les groupes NEL sont déconnectés si un déclenchement de GB survient.

6.9 Gros Consommateurs (HC)

6.9.1 Connexion conditionnelle des gros consommateurs
Chaque unité de générateur diesel et d'alternateur attelé peut gérer deux gros consommateurs (Heavy Consumers - HC).
Lorsqu'un gros consommateur est demandé, la fonction de connexion conditionnelle pour gros consommateurs réserve la valeur HC requise programmée (paramètre 8201/8211) sur le jeu de barres et bloque l'embrayage du gros consommateur jusqu'à ce qu'il y ait la puissance disponible prévue au jeu de barres.

Lorsque la puissance disponible a dépassé la puissance HC requise, le gros consommateur est ensuite bloqué jusqu'à expiration de la temporisation programmée d'acquittement du HC = « DELAY ACK. HC » (délai fixé à 4 secondes).
Le « DELAY ACK. HC » peut être nécessaire pour permettre au générateur venant de démarrer de prendre la charge et donc d'augmenter la puissance disponible au jeu de barres avant l'engagement du HC.

Les HC sont connectés en fonction de leur ordre de priorité. Par conséquent, si deux HC ou plus demandent simultanément l'acquittement pour démarrer, le HC de plus haute priorité est géré en premier, et ensuite les autres HC de priorité moindre.

HC 1.1 (1er HC pour l'unité DG avec l'ID CAN n°1) désigne la priorité la plus haute. Le HC 1.1 est donc pris en charge avant le HC 1.2 et HC 2.1 avant le HC 2.2, si leur démarrage est demandé au même moment. S'il y a des HC préférés, il doivent être connectés à l'interface matérielle du 1er HC de façon à ce que la gestion de première priorité soit assurée.
Le système de gestion de l’énergie exécute la séquence répétitive suivante, lorsque le démarrage d’un gros consommateur est requis :

a) La valeur programmée « HCn REQ. VALUE est réservée sur le jeu de barres (Paramètre 8201/8211).

b) Une commande PMS de démarrage est transmise au générateur en veille suivant dans la file, si la puissance disponible prévue est inférieure à la « LOAD START LIMIT » (limite de charge de démarrage) programmée.

c) Lorsqu’il existe suffisamment de puissance disponible sur le jeu de barres, le temporisateur « DELAY ACK. HCn » se déclenche (délai fixé à 4 sec.)
 Si un délai plus long est nécessaire la temporisation de connexion HC (HC connect timer) peut être utilisée. La temporisation démarre dès expiration de la temporisation fixée à 2 secondes. Paramètres 8204 & 8214.

d) Le signal d’acquittement du démarrage est transmis au HC concerné lorsque la temporisation « DELAY ACK. HCn » est expirée et que l’énergie disponible mesurée au jeu de barres est toujours suffisante.

e) La puissance nominale du HC (paramètre 8202/8212) est utilisée pour le calcul du démarrage/de l’arrêt en fonction de la charge après émission du signal d’acquittement.

6.9.2 Retour d’information puissance du HC

Le système PPM peut gérer deux types de retour d’information puissance :

- binaire
- analogique

Les deux types de signaux sont gérés de la même façon par la fonction de connexion conditionnelle des gros consommateurs.

Le changement du type de retour d’information puissance s’effectue pour chaque unité DG par le paramètre (8203/8213).

L’activation de l’entrée binaire de commande de démarrage correspondante déclenche la séquence d’embrayage des HC. Le système PPM-3 transmet un signal d’acquittement du démarrage lorsque la puissance disponible prévue sur le jeu de barres est atteinte.

HC avec signal binaire de retour d’information puissance :
6.9.3 La séquence d'embrayage pour les HC avec charge fixe
La réservation de puissance au moyen de l'entrée de retour d'information « HCx fixed load » est effective tant que le signal start request est présent. L'état OFF du signal de retour d'information puissance (indiquant que le HC ne fonctionne pas) entraîne une réservation de puissance de 100% au jeu de barres. L'état ON (indiquant que le HC est en marche) n'entraîne aucune réservation de puissance au jeu de barres.
Le retour d'information puissance analogique pour le gros consommateur est conçu pour un transformateur de puissance avec une sortie 4-20mA correspondant à 0-100% de la charge. Si le HC est sur 400kW, le transformateur de puissance doit être calibré à 0-400kW = 4-20mA et le réglage doit être effectué pour 400kW.
7. Autres fonctions

7.1 Fonctions de démarrage pour DG + EDG

L'unité démarre le générateur quand la commande de démarrage est donnée. La séquence de démarrage est interrompue par l'arrêt du démarreur ou par le retour d’information moteur tournant.

Ces deux possibilités de désactiver le relais de démarrage permettent de retarder les alarmes d'état moteur tournant.

Voir chapitre 4 pour plus d'informations sur la séquence de démarrage.

S'il n'est pas possible, à basse vitesse, d'activer les alarmes d'état moteur tournant, la fonction d'arrêt du démarreur doit être utilisée.

L’alarme de pression d’huile est un exemple d’alarme critique. Celle-ci est normalement configurée à la classe de défaut « shutdown ». Mais si le démarreur doit débrayer à 400 tours/minute (RPM), et que la pression d’huile n’atteint pas un niveau supérieur au point de consigne d’arrêt immédiat avant 600 tours/minute, l’activation de cette alarme à 400 tours/minute entraînerait bien sûr l’arrêt immédiat du générateur. Dans ce cas, le retour d’information moteur tournant doit être activé à une vitesse supérieure à 600 tours/minute.

7.1.1 Retours d’information numériques

Si un relais externe moteur tournant est installé, les entrées numériques moteur tournant ou arrêt du démarreur peuvent être utilisées.

Retour d’information moteur tournant
Quand ce retour d’information numérique est activé, le relais de démarrage est désactivé et le démarreur débrayé.
Ce schéma montre que le retour d’information numérique moteur tournant (borne 117) est activé quand le moteur atteint sa vitesse d’allumage.

Arrêt démarreur
Quand l’entrée numérique d’arrêt du démarreur est activée, le relais de démarrage est désactivé et le démarreur débrayé.

Ce schéma montre que l’entrée d’arrêt du démarreur est activée quand le moteur a atteint sa vitesse d’allumage. A la vitesse de fonctionnement, le retour numérique moteur tournant est activé.

L’entrée d’arrêt du démarreur doit être configurée à partir des entrées numériques disponibles.

Le retour d’information moteur tournant est détecté par entrée numérique (voir schéma ci-dessus), fréquence mesurée > 32Hz, tours/minutes mesurés par capteur magnétique ou EIC (option H5/H7).

7.1.2 Retour d’information de tachymètre analogique
Quand un capteur magnétique (MPU) est utilisé, il est possible de régler le nombre de tours/minute nécessaire à la désactivation du relais de démarrage.
Retour d’information moteur tournant.
Le schéma ci-dessous montre que le retour d’information moteur tournant est détecté à la vitesse d’allumage.
Le réglage usine est de 1000 tours/minute (6170 Running detect.).

⚠️ Noter que le réglage usine de 1000 tours/minute est à une vitesse plus élevée que celle de la plupart des démarreurs. Il faut abaisser cette valeur pour éviter d’endommager le démarreur.

Entrée d’arrêt du démarreur
Le schéma ci-dessous montre comment le point de consigne d’arrêt du démarreur est détecté à la vitesse d’allumage. Le réglage usine est de 400 tours/minute (6170 Running detect.).

⚠️ Le nombre de dents sur le volant du démarreur doit être défini dans le menu 6170 quand l’entrée MPU est utilisée.

7.1.3 Pression d’huile
Les entrées multiples aux bornes 102, 105 et 108 peuvent être utilisées pour la détection du retour d’information moteur tournant. La borne en question doit être configurée comme une entrée VDO pour mesure de pression d’huile.

Quand la pression d’huile atteint la valeur définie (6175 Pressure level), le retour d’information moteur tournant est détecté et la séquence de démarrage arrêtée.
Retour d’information moteur tournant

Entrée d’arrêt du démarreur
Le schéma ci-dessous montre comment le point de consigne d’arrêt du démarreur est détecté à la vitesse d’allumage. Le réglage usine est de 400 tours/minute (6170 Running detect.).

La fonction d’arrêt du démarreur peut utiliser un MPU ou une entrée numérique.

7.2 Disjoncteur

Le signal d’arrêt du disjoncteur est à impulsions. Le PPM-3 utilise le relais de commande d’arrêt et celui de commande d’ouverture. Le relais de fermeture du disjoncteur se ferme un court instant pour fermer le disjoncteur. Le relais d’ouverture du disjoncteur se ferme brièvement pour l’ouverture du disjoncteur.

7.3 Temps de réarmement du disjoncteur

Pour éviter les échecs de fermeture de disjoncteur quand la commande “breaker ON” est donnée avant que le disjoncteur n’ait réarmé, le temps de réarmement du disjoncteur peut être réglé.
Exemple de situation présentant un risque d'échec de fermeture :

1. Le générateur est en mode auto, l’entrée «auto start/stop» est activée, le générateur est en marche, et le
GB (disjoncteur du générateur) est fermé.
2. L’entrée « auto start/stop » est désactivée; la séquence d'arrêt est exécutée et le GB est ouvert.
3. Si l'entrée « auto start/stop » est réactivée avant que la séquence d'arrêt ne soit terminée, il y a échec de
fermeture du GB, car il n'y a pas eu suffisamment de temps pour son réarmement.

Il y a deux solutions possibles suivant le type de disjoncteur:

1. Temporisation
Un point de consigne pour le temps de réarmement du disjoncteur, pour les disjoncteurs ne disposant pas
d'un retour d'information indiquant que le disjoncteur est réarmé. Une fois le disjoncteur ouvert, il ne pourra
pas être refermé avant l'expiration du délai défini. Ce point de consigne peut être réglé dans le menu 6230.

2. Entrée numérique
Une entrée paramétrable est utilisée pour les retours d'informations du disjoncteur : Après ouverture du dis-
joncteur, il ne pourra pas être refermé avant que les entrées paramétrées soient activées. Les entrées sont
paramétrées dans l’utilitaire ML-2. Quand il y a temporisation, le temps restant est affiché.

Si les deux solutions sont utilisées simultanément, les deux conditions doivent être remplies avant que la fer-
meture du disjoncteur ne soit possible.

Indicateur LED pour le disjoncteur
Pour avertir l'utilisateur que la séquence de fermeture du disjoncteur a commencé mais que l'autorisation de
fermer est en attente, l'indicateur LED pour le disjoncteur passe au jaune clignotant.

Le PPM-3 peut aussi prendre en compte le temps de réarmement du disjoncteur après ouverture. Ceci peut
être réglé par des temporisations sur le PPM-3 ou par des retours d'information numériques venant du dis-
joncteur, en fonction du type de disjoncteur.

7.3.1 Principe
Le diagramme illustre un exemple avec un seul PPM-3 ilôté contrôlé par l'entrée « start/stop AUTO ».

La séquence est la suivante : Quand l’entrée « start/stop AUTO » est désactivée, le GB est ouvert. L’entrée
« auto start/stop » est immédiatement réactivée après ouverture du GB, par exemple par opération manuelle
sur l'armoire. Cependant, le PPM-3 n'envoie pas le signal de fermeture immédiatement parce qu'il faut at-
tendre l'expiration de la temporisation de réarmement du disjoncteur (ou l'activation du signal numérique –
pas dans cet exemple). Ensuite le PPM-3 émet le signal de fermeture.
7.4 Inhibition d'alarme

7.4.1 Inhibition d'alarme
De manière à pouvoir choisir le moment où les alarmes seront activées, une fonction d'inhibition paramétrable est disponible pour chaque alarme. Cette fonctionnalité n'est disponible que dans l'utilitaire PC (USW).
Pour chaque alarme, une fenêtre déroulante permet de choisir quels signaux peuvent la neutraliser.
Choix pour l'inhibition d'alarme:

<table>
<thead>
<tr>
<th>Fonction</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inhibit 1</td>
<td>Sorties M-logic: Conditions programmées en M-logic</td>
</tr>
<tr>
<td>Inhibit 2</td>
<td></td>
</tr>
<tr>
<td>Inhibit 3</td>
<td></td>
</tr>
<tr>
<td>GB ON (BTB ON)</td>
<td>Le GB (BTB) est fermé</td>
</tr>
<tr>
<td>GB OFF (BTB OFF)</td>
<td>Le GB (BTB) est ouvert</td>
</tr>
<tr>
<td>Run status</td>
<td>Générateur tournant et tempo. dans menu 6160 expirée</td>
</tr>
<tr>
<td>Not run status</td>
<td>Générateur arrêté ou tempo. menu 6160 non expirée</td>
</tr>
<tr>
<td>Generator voltage > 30%</td>
<td>Tension du générateur > 30% tension nominale</td>
</tr>
<tr>
<td>Generator voltage < 30%</td>
<td>Tension du générateur < 30% tension nominale</td>
</tr>
<tr>
<td>TB ON</td>
<td>Le TB sur l’armoire principale est fermé (EDG seulement)</td>
</tr>
<tr>
<td>TB OFF</td>
<td>Le TB sur l’armoire principale est ouvert (EDG seulement)</td>
</tr>
<tr>
<td>Parallel</td>
<td>GB et TB sont tous les deux fermés (EDG seulement)</td>
</tr>
<tr>
<td>Not parallel</td>
<td>GB ou TB sont fermés, mais pas les deux (EDG seulement)</td>
</tr>
</tbody>
</table>

L’inhibition d’alarme est activée tant qu’une des fonctions sélectionnées est active.

Dans cet exemple, les inhibitions choisies sont *Not run status* et *GB ON*. Ici, l’alarme est activée quand le générateur a démarré. Quand le générateur est synchronisé avec le jeu de barres, l’alarme est de nouveau inhibée.
Le LED d’inhibition sur l’appareil et à l’affichage sont activés quand une des fonctions d’inhibition est activée.

Les entrées supportant des fonctions telles que le retour d’information moteur tournant, le démarrage à distance ou le verrouillage de l’accès ne sont jamais inhibées. Seules les entrées d’alarme peuvent être neutralisées.

L’unité du BTB n’a pas de détection moteur tournant paramétrable, donc les seules fonctions de neutralisation sont l’entrée binaire et la position du BTB.

7.4.2 Run status (6160)
Les alarmes peuvent être paramétrées pour s’activer uniquement quand le retour d’information moteur tournant est actif et à l’expiration de la temporisation choisie.

Le schéma ci-dessous montre un exemple de temporisation après activation du retour d’information moteur tournant. À l’expiration de cette temporisation, les alarmes avec Run status sont activées.
7.5 Sorties état moteur tournant

Run status (6160) peut être réglé pour émettre un signal pour sortie numérique quand le générateur est en fonctionnement.

Choisir le numéro de sortie relais pour « Output A » et « Output B » et activer la fonction. Mettre la fonction relais à « limit relay » dans le menu E/S. Le relais est activé, mais il n'y a pas d'alarme.

Si la fonction relais n'est pas passée à « limit relay », une alarme s'affiche chaque fois que le générateur est en fonctionnement.
7.6 Classe de défaut

Toutes les alarmes activées doivent appartenir une classe de défaut. Les classes de défaut définissent les catégories d’alarme et les actions qui en découlent.

Sept classes de défaut distinctes peuvent être utilisées. Les tableaux ci-dessous illustrent l’action de chaque classe de défaut quand le moteur est en fonctionnement ou arrêté.

7.6.1 Moteur tournant

<table>
<thead>
<tr>
<th>Classe de défaut</th>
<th>Action</th>
<th>Relais avertisseur alarme</th>
<th>Affichage des alarmes</th>
<th>Délestage</th>
<th>Ouverture GB</th>
<th>Déclenchement BTB</th>
<th>Refroidissement Générateur</th>
<th>Arrêt Générateur</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Block</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 Warning</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Trip of GB</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td>(X)</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>4 Trip and stop</td>
<td></td>
<td>X</td>
<td>X</td>
<td>(X)</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>5 Shutdown</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>6 Trip of TB</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 Safety stop</td>
<td></td>
<td>X</td>
<td>X</td>
<td>(X)</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Ce tableau indique les actions correspondant aux classes de défaut. Par exemple, une alarme définie en classe « shutdown » (arrêt immédiat) entraîne les actions suivantes:

- Le relais de l’avertisseur sonore de l’alarme est activé
- L’alarme est affichée sur l’écran d’information correspondant
- Le disjoncteur du générateur (GB) s’ouvre instantanément
- Le générateur est arrêté instantanément
- Le générateur ne peut pas être démarré via le PPU-3 (voir tableau suivant)

Avec la classe de défaut ‘Safety stop’, il y a déchargement du générateur avant ouverture du disjoncteur.
7.6.2 Moteur arrêté

<table>
<thead>
<tr>
<th>Classe de défaut</th>
<th>Blocage démarrage moteur</th>
<th>Blocage séquence BTB</th>
<th>Blocage séquence GB</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Block</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 Warning</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>3 Trip of GB</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>4 Trip and stop</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>5 Shutdown</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>6 Trip of TB</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>7 Safety stop</td>
<td></td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

Outre les actions définies par les classes de défaut, il est possible d’activer une ou deux sorties relais si des relais supplémentaires sont disponibles.

7.6.3 Configuration de la classe de défaut
La classe de défaut est choisie pour chaque fonction d’alarme via l’affichage ou le logiciel.

Pour changer la classe de défaut via le logiciel PC, il faut sélectionner la fonction d’alarme à configurer. Choisir la classe de défaut souhaitée dans la liste déroulante correspondante.

![Parameter configuration](image)
7.6.4 Sortie de l’avertisseur sonore
Tous les relais configurables peuvent être utilisés comme sortie de l’avertisseur sonore. Un relais peut donc être connecté à un avertisseur sonore. Chaque fois qu’une nouvelle alarme se déclenche, le relais de l’avertisseur est activé.

La sortie de l’avertisseur sonore est activée par toutes les alarmes. La sortie reste activée jusqu’à ce que:
- L’alarme est acquittée
- La temporisation de la sortie relais soit expirée (fonction de réinitialisation automatique)

Un relais utilisé comme avertisseur sonore ne peut pas avoir d’autre fonction.

La sortie avertisseur ne sera pas activée par des fonctions à interrupteur de fin de course.

Réinitialisation automatique
La fonction de relais d’avertisseur possède une fonction de réinitialisation automatique. Quand la temporisation (menu 6130) n’est pas égale à 0, la sortie relais de l’avertisseur sonore est réinitialisée à expiration de la temporisation. C’est également le cas quand l’alarme est TOUJOURS présente.

La sortie de l’avertisseur sonore est réinitialisée quand l’alarme est toujours présente. C’est le but de la réinitialisation automatique.

Réinitialisation manuelle
Si la temporisation est à zéro, la réinitialisation de la sortie avertisseur est inopérante. L’avertisseur reste ON tant que l’alarme n’est pas acquittée par l’opérateur. L’état de l’alarme passe de non-acquitté (UNACK) à acquitté (ACK).

Si la cause de l’alarme a disparu quand l’alarme est acquittée, le message d’alarme correspondant est aussi effacé.

7.7 Compteurs de maintenance
L’unité AGC peut gérer les intervalles de maintenance. 2 compteurs de maintenance sont disponibles pour couvrir différents intervalles. Les compteurs de maintenance sont définis dans les menus 6110 et 6120.

La fonction est basée sur les heures de fonctionnement. Quand l’intervalle défini est écoulé, l’unité affiche une alarme.

Les heures de fonctionnement sont comptées quand le retour d’information moteur tournant est activé.

Les points de consigne figurent dans les menus 6110 et 6120 :

* **Enable:** Active/Désactive la fonction d’alarme.
* **Running hours:** Le nombre d’heures de fonctionnement avant activation de l’alarme.
* **Day:** Le nombre de jours avant activation de l’alarme – si ce nombre est atteint avant le nombre d’heures de fonctionnement, l’alarme est déclenchée.
Fail class: La classe de défaut de l’alarme.

Output A: Relais à activer quand l’alarme est déclenchée.

Reset: Remet le compteur de maintenance à zéro, ce qui doit être fait quand l’alarme est activée.

7.8 Détection de rupture de câble

Pour surveiller les sondes/câbles connectés aux entrées multiples et aux entrées analogiques, il est possible d’activer la fonction de rupture de câble pour chaque entrée. Pour une entrée donnée, une valeur mesurée en-dehors de sa plage dynamique normale sera traitée comme un court-circuit ou une rupture de câble. Une alarme avec une classe de défaut paramétrable sera activée.

<table>
<thead>
<tr>
<th>Entrée</th>
<th>Plage de défaut</th>
<th>Plage normale</th>
<th>Plage de défaut</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-20 mA</td>
<td>< 3 mA</td>
<td>4-20 mA</td>
<td>> 21 mA</td>
</tr>
<tr>
<td>0-40V DC</td>
<td>≤ 0V DC</td>
<td>-</td>
<td>N/A</td>
</tr>
<tr>
<td>VDO huile, type 1</td>
<td>< 10.0 Ohm</td>
<td>-</td>
<td>> 184.0 Ohm</td>
</tr>
<tr>
<td>VDO huile, type 2</td>
<td>< 10.0 Ohm</td>
<td>-</td>
<td>> 184.0 Ohm</td>
</tr>
<tr>
<td>VDO Temp, type 1</td>
<td>< 22.4 Ohm</td>
<td>-</td>
<td>> 291.5 Ohm</td>
</tr>
<tr>
<td>VDO Temp, type 2</td>
<td>< 18.3 Ohm</td>
<td>-</td>
<td>> 480.7 Ohm</td>
</tr>
<tr>
<td>VDO Temp, type 3</td>
<td>< 7.4 Ohm</td>
<td>-</td>
<td>> 69.3 Ohm</td>
</tr>
<tr>
<td>VDO Carburant, type 1</td>
<td>< 1.6 Ohm</td>
<td>-</td>
<td>> 78.8 Ohm</td>
</tr>
<tr>
<td>VDO Carburant, type 2</td>
<td>< 3.0 Ohm</td>
<td>-</td>
<td>> 180.0 Ohm</td>
</tr>
<tr>
<td>VDO paramétrable</td>
<td>< résistance mini</td>
<td>-</td>
<td>> résistance maxi</td>
</tr>
<tr>
<td>Pt100</td>
<td>< 82.3 Ohm</td>
<td>-</td>
<td>> 194.1 Ohm</td>
</tr>
<tr>
<td>Pt1000</td>
<td>< 823 Ohm</td>
<td>-</td>
<td>> 1941 Ohm</td>
</tr>
<tr>
<td>Contacteur de niveau</td>
<td>activée seulement si le contacteur est ouvert</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

7.8.1 Principe
Le schéma ci-dessous montre que quand il y a rupture du câble de l’entrée, la valeur mesurée tombe à zéro, ce qui déclenche l’alarme.
7.8.2 Rupture de câble de MPU (menu 4550)
La fonction de rupture de câble de MPU est activée uniquement quand le générateur n’est pas en fonctionnement, l’alarme étant levée en cas de rupture de câble entre le PPM-3 et le MPU.

7.8.3 Rupture du câble de la bobine d’arrêt (menu 6270)
Cette alarme se déclenche quand la bobine d’arrêt n’est pas activée (générateur en fonctionnement) et l’entrée est désexcitée.

7.9 Entrées numériques
L’unité possède nombre d’entrées numériques, dont certaines paramétrables et d’autres non.

<table>
<thead>
<tr>
<th>Carte d’interface moteur</th>
<th>Entrées disponibles – non paramétrables</th>
<th>Entrées disponibles – paramétrables</th>
</tr>
</thead>
<tbody>
<tr>
<td>M4 (standard)</td>
<td>1</td>
<td>6</td>
</tr>
</tbody>
</table>

Le tableau ci-dessous présente toutes les entrées numériques utilisées avec les contrôleurs PPM-3 et indique dans quel mode opératoire la fonction décrite est activée.
X = fonction peut être activée.
N/R = ne s’applique pas à cette fonction.
<table>
<thead>
<tr>
<th>Fonction de l’entrée</th>
<th>Auto</th>
<th>Semi</th>
<th>Test</th>
<th>SWBD</th>
<th>Paramétrable</th>
<th>Type entrée</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Shore connection pos ON</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>N/R</td>
<td>Paramétrable</td>
<td>Constant</td>
</tr>
<tr>
<td>2 Manual GOV up</td>
<td>N/R</td>
<td>N/R</td>
<td>N/R</td>
<td>X</td>
<td>Paramétrable</td>
<td>Constant</td>
</tr>
<tr>
<td>3 Manual GOV down</td>
<td>N/R</td>
<td>N/R</td>
<td>N/R</td>
<td>X</td>
<td>Paramétrable</td>
<td>Constant</td>
</tr>
<tr>
<td>4 Manual AVR up</td>
<td>N/R</td>
<td>N/R</td>
<td>N/R</td>
<td>X</td>
<td>Paramétrable</td>
<td>Constant</td>
</tr>
<tr>
<td>5 Manual AVR down</td>
<td>N/R</td>
<td>N/R</td>
<td>N/R</td>
<td>X</td>
<td>Paramétrable</td>
<td>Constant</td>
</tr>
<tr>
<td>6 GB short circuit</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>Paramétrable</td>
<td>Impulsions</td>
</tr>
<tr>
<td>SGB short circuit</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SCB short circuit</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BTB short circuit</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TB short circuit</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 Alarm inhibit 1-3</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>Paramétrable</td>
<td>Constant</td>
</tr>
<tr>
<td>8 Secured mode ON</td>
<td>X</td>
<td>N/R</td>
<td>N/R</td>
<td>N/R</td>
<td>Paramétrable</td>
<td>Impulsion</td>
</tr>
<tr>
<td>9 Secured mode OFF</td>
<td>X</td>
<td>N/R</td>
<td>N/R</td>
<td>N/R</td>
<td>Paramétrable</td>
<td>Impulsion</td>
</tr>
<tr>
<td>10 Base load</td>
<td>N/R</td>
<td>X</td>
<td>N/R</td>
<td>N/R</td>
<td>Paramétrable</td>
<td>Impulsion</td>
</tr>
<tr>
<td>11 Remote start and close</td>
<td>N/R</td>
<td>X</td>
<td>N/R</td>
<td>N/R</td>
<td>Paramétrable</td>
<td>Impulsion</td>
</tr>
<tr>
<td>12 Remote open and stop</td>
<td>N/R</td>
<td>X</td>
<td>N/R</td>
<td>N/R</td>
<td>Paramétrable</td>
<td>Impulsion</td>
</tr>
<tr>
<td>13 Remote start</td>
<td>N/R</td>
<td>X</td>
<td>N/R</td>
<td>N/R</td>
<td>Paramétrable</td>
<td>Impulsion</td>
</tr>
<tr>
<td>14 Remote stop</td>
<td>N/R</td>
<td>X</td>
<td>N/R</td>
<td>N/R</td>
<td>Paramétrable</td>
<td>Impulsion</td>
</tr>
<tr>
<td>15 Remote GB ON</td>
<td>N/R</td>
<td>X</td>
<td>N/R</td>
<td>N/R</td>
<td>Paramétrable</td>
<td>Impulsion</td>
</tr>
<tr>
<td>Remote SGB ON</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Remote SCB ON</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Remote BTB ON</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Remote TB ON</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16 Remote GB OFF</td>
<td>N/R</td>
<td>X</td>
<td>N/R</td>
<td>N/R</td>
<td>Paramétrable</td>
<td>Impulsion</td>
</tr>
<tr>
<td>Remote SGB OFF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Remote SCB OFF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Remote BTB OFF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Remote TB OFF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17 Binary running detection</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>Paramétrable</td>
<td>Constant</td>
</tr>
<tr>
<td>18 Mode semi-auto</td>
<td>X</td>
<td>N/R</td>
<td>X</td>
<td>N/R</td>
<td>Paramétrable</td>
<td>Impulsion</td>
</tr>
<tr>
<td>19 Auto mode</td>
<td>N/R</td>
<td>X</td>
<td>X</td>
<td>N/R</td>
<td>Paramétrable</td>
<td>Impulsion</td>
</tr>
<tr>
<td>20 GB spring loaded</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>Paramétrable</td>
<td>Constant</td>
</tr>
<tr>
<td>SGB spring loaded</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SCB spring loaded</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BTB spring loaded</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TB spring loaded</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21 Block for LD stop</td>
<td>X</td>
<td>N/R</td>
<td>N/R</td>
<td>N/R</td>
<td>Paramétrable</td>
<td>Constant</td>
</tr>
<tr>
<td>22 Force all units to SWBD control</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>N/R</td>
<td>Paramétrable</td>
<td>Constant</td>
</tr>
<tr>
<td>23 Force all DG units to semi-auto</td>
<td>X</td>
<td>N/R</td>
<td>X</td>
<td>N/R</td>
<td>Paramétrable</td>
<td>Impulsion</td>
</tr>
<tr>
<td>24 Force all DG units to auto</td>
<td>N/R</td>
<td>X</td>
<td>X</td>
<td>N/R</td>
<td>Paramétrable</td>
<td>Impulsion</td>
</tr>
</tbody>
</table>
7.9.1 Description des fonctions

1. **Shore connection pos ON**
 La connexion à quai est fermée, ce qui empêche la synchronisation des disjoncteurs de générateur.

2. **Manual GOV up**
 Entrée binaire pour augmentation de vitesse.

3. **Manual GOV down**
 Entrée binaire pour réduction de vitesse.

4. **Manual AVR up**
 Entrée binaire pour augmentation de tension.

5. **Manual AVR down**
 Entrée binaire pour réduction de tension.
Les entrées de régulation de vitesse et de tension ne peuvent être utilisées qu’en mode manuel (contrôle armoire - SWBD) La régulation AVR nécessite l’option D1.

6. GB/SGB/SCB/BTB/TB short circuit
Entrée d’alarme pour une ouverture de disjoncteur par court-circuit externe (pour tout type de disjoncteur).

7. Alarm inhibit 1-3
3 entrées distinctes de neutralisation d’alarme peuvent être utilisées.

8. Secured mode ON
Pour mode de fonctionnement DG uniquement: le mode sécurisé ajoute un générateur au système, en plus du ou des des générateurs correspondant aux besoins immédiats. Cette fonction est aussi appelée « harbour mode ».

9. Secured mode OFF
Pour arrêter le mode sécurisé (voir 8).

10. Puissance fixe
Le générateur fonctionne à la puissance fixe et ne participe pas au contrôle de fréquence. Si les besoins de l’installation baissent, la consigne de puissance fixe est réduite pour faire en sorte que l’autre ou les autres générateurs produisent au moins 10% de la puissance.

11. Remote start and close
Commande du démarrage et de la synchronisation en semi-auto.

12. Remote open and stop
Délestage, ouverture disjoncteur et arrêt en semi-auto.

13. Démarrage à distance
Démarrage en semi-auto.

14. Remote stop
Arrêt en semi-auto.

15. Remote GB/SGB/SCB/BTB/TB ON
La séquence ON du disjoncteur est amorcée et le disjoncteur est synchronisé, si le jeu de barres est sous tension.

La séquence OFF du disjoncteur est amorcée, si l’unité concernée n’est pas la dernière à avoir été connectée.

17. Binary running detection
Le générateur diesel / l’alternateur attelé est en marche.

18. Mode semi-auto
 Sélection du mode semi-auto.

19. Auto mode
 Sélection du mode auto.

20. GB/SGB/SCB/BTB/TB spring loaded
Le retour d’information armentment du disjoncteur est activé et le disjoncteur peut être fermé.
21. Block for LD stop
DG uniquement: l’arrêt en fonction de la charge est inopérant.

22. Force all units to SWBD control
Toutes les unités PPM-3 passent sous contrôle armoire (SWBD), donc tous les contrôles et commandes sont inopérants. Les protections restent actives.

23. Force all DG units to semi-auto
Toutes les unités PPM-3 DG passent en mode semi-auto.

24. Force all DG units to auto
Toutes les unités PPM-3 DG passent en mode auto.

25. Acquittement d’alarme à distance
Toutes les alarmes présentes sont acquittées. Le LED d’alarme sur l’écran cesse de clignoter.

26. Force all DG units in section to semi-auto
Toutes les unités PPM-3 DG de cette section (jeu de barres séparé) passent en mode semi-auto.

27. Force all DG units in section to auto
Toutes les unités PPM-3 DG de cette section (jeu de barres séparé) passent en mode auto.

28. External f control
Le point de consigne de la fréquence nominale est vérifié à partir des entrées analogiques bornes 40/41. Le point de consigne interne n’est pas utilisé.

29. External P control
Le point de consigne de la puissance fixe est vérifié à partir des entrées analogiques bornes 40/41. Le point de consigne interne n’est pas utilisé.

30. External U control
Le point de consigne de la tension nominale est vérifié à partir des entrées analogiques bornes 41/42. Le point de consigne interne n’est pas utilisé.

31. External PF control
Le point de consigne du facteur de puissance est vérifié à partir des entrées analogiques bornes 40/41. Le point de consigne interne n’est pas utilisé.

32. External VAr control
Le point de consigne de la puissance réactive est vérifié à partir des entrées analogiques bornes 41/42. Le point de consigne interne n’est pas utilisé.

33. Force analogue LS
La ligne de répartition de charge analogique est activée. La répartition de charge via CANbus est désactivée.

34. Main supply on MBB
L’alimentation au jeu de barres principal ne provient pas du générateur de secours, le PPM-3 EDG peut donc s’arrêter. Signal important en entrée quand le contrôleur EDG est configuré comme une unité autonome en mode connexion à quai (“harbour mode”).

35. Shutdown override (marche forcée)
Toutes les alarmes d’arrêt immédiat (par ex. surrégime, court-circuit, et arrêt immédiat) passent en classe de défaut “Warning” (avertissement).
36. 1st priority
Le générateur diesel en question a la 1ère priorité au démarrage.

37. Blackout
Un blackout a été détecté sur le jeu de barres principal. Quand cette entrée est activée, l'unité PPM-3 en question n'attend pas d'information CANbus et démarre immédiatement.

38. Surrégime
L'entrée numérique "overspeed" (surrégime) est activée. L'arrêt immédiat en cas de surrégime est disponible, même si la fonction "shutdown override" (marche forcée) est activée.

39. Verrouillage de l'accès
Les touches de l'affichage sont inopérantes.

40. Start enable
Cette entrée doit être activée pour permettre le démarrage du moteur. Si elle n'est pas activée, le moteur démarre immédiatement.

Quand le générateur est démarré, cette entrée peut être enlevée.

41. HC 1 request
Demande de démarrage du Gros Consommateur 1 (HC 1).

42. HC 2 request
Demande de démarrage du Gros Consommateur 2 (HC 2).

43. HC 1 fixed load feedback
HC 1 tourne et consomme 100% de la puissance.

44. HC 2 fixed load feedback
HC 2 tourne et consomme 100% de la puissance.

45. PTH mode
SG uniquement: Le générateur attelé est en mode propulsion de secours et entraîne l'hélice (Power Take Home - PTH).

46. DG supply
Unité BTB uniquement: choix du mode de fonctionnement générateur diesel.

47. SG/SC supply
Unité BTB uniquement: choix du mode de fonctionnement alternateur attelé / connexion au quai

48. Ship-to-ship supply
SC uniquement: le disjoncteur de connexion à quai (SHORE) peut être utilisé pour alimenter un autre navire.

49. Test
EDG uniquement: Commande d'exécution d'un test. Le test peut être simple (démarrer, tourner un certain temps, arrêter), de charge (démarrer et synchroniser, tourner à puissance fixe un certain temps, décharger le générateur, ouvrir le disjoncteur du générateur et arrêter), ou complet (démarrer, synchroniser, ouvrir disjoncteur de couplage et laisser le générateur de secours alimenter l'armoire de secours un certain temps, synchroniser le disjoncteur de couplage, décharger le générateur, ouvrir le disjoncteur du générateur et arrêter).
7.10 Entrées multiples

L’unité PPM-3 a trois entrées multiples qui peuvent être paramétrées pour servir comme types d’entrée suivants :

1. 4-20 mA
2. 0-40V DC
3. Pt100
4. Pt1000
5. VDO oil (huile)
6. VDO water (eau)
7. VDO fuel (carburant)
8. Numérique

La fonction des entrées multiples est paramétrable uniquement dans l’utilitaire (USW).

2 niveaux d’alarme sont disponibles pour chaque entrée. Les numéros de menu pour le paramétrage des alarmes, indiqués dans le tableau ci-dessous, dépendent du type d’entrée choisi :

<table>
<thead>
<tr>
<th>Type entrée</th>
<th>Entrée multiple 102</th>
<th>Entrée multiple 105</th>
<th>Entrée multiple 108</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-20 mA</td>
<td>4120/4130</td>
<td>4250/4260</td>
<td>4380/4390</td>
</tr>
<tr>
<td>0-40V DC</td>
<td>4140/4150</td>
<td>4270/4280</td>
<td>4400/4410</td>
</tr>
<tr>
<td>Pt100/Pt1000</td>
<td>4160/4170</td>
<td>4290/4300</td>
<td>4420/4430</td>
</tr>
<tr>
<td>VDO oil</td>
<td>4180/4190</td>
<td>4310/4320</td>
<td>4440/4450</td>
</tr>
<tr>
<td>VDO water</td>
<td>4200/4210</td>
<td>4330/4340</td>
<td>4460/4470</td>
</tr>
<tr>
<td>VDO fuel</td>
<td>4220/4230</td>
<td>4350/4360</td>
<td>4480/4490</td>
</tr>
<tr>
<td>Digital</td>
<td>3400</td>
<td>3410</td>
<td>3420</td>
</tr>
</tbody>
</table>

Un seul niveau d’alarme est disponible pour l’entrée numérique.

7.10.1 4-20 mA
Si une des entrées multiples est paramétrée ainsi, l’unité et la plage de valeurs correspondant à 4-20 mA peuvent être modifiés dans l’utilitaire USW de manière à obtenir des mesures correctes à l’affichage.

7.10.2 0-40V DC
L’entrée 0-40 V DC est conçue principalement pour le test d’asymétrie des batteries.

7.10.3 PT100/1000
Ce type d’entrée peut être utilisé comme sonde de chaleur, par exemple pour la température de l’eau de refroidissement. L’unité de température peut être modifiée de Celsius à Fahrenheit dans l’utilitaire USW.

7.10.4 Entrées VDO
L’appareil peut accueillir jusqu’à trois entrées VDO. Ces entrées ont des fonctions diverses, comme le permet la conception matérielle des VDO.
Ces différents types d’entrées VDO peuvent être utilisées pour toutes les entrées multiples.

VDO oil: Pression d’huile
VDO water: Température eau de refroidissement
VDO fuel: Capteur de niveau de carburant

Pour chaque type d’entrée VDO, il est possible de choisir entre différentes propriétés dont une est paramétrable.

7.10.5 VDO oil (huile)
Cette entrée VDO sert à mesurer la pression de l’huile de lubrification.

<table>
<thead>
<tr>
<th>Pression (Bar)</th>
<th>Type 1 (psi)</th>
<th>Type 2 (Ω)</th>
<th>Type paramétrable (Ω)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>10.0</td>
<td>10.0</td>
</tr>
<tr>
<td>0.5</td>
<td>7</td>
<td>27.2</td>
<td></td>
</tr>
<tr>
<td>1.0</td>
<td>15</td>
<td>44.9</td>
<td>31.3</td>
</tr>
<tr>
<td>1.5</td>
<td>22</td>
<td>62.9</td>
<td></td>
</tr>
<tr>
<td>2.0</td>
<td>29</td>
<td>81.0</td>
<td>51.5</td>
</tr>
<tr>
<td>2.5</td>
<td>36</td>
<td>99.2</td>
<td></td>
</tr>
<tr>
<td>3.0</td>
<td>44</td>
<td>117.1</td>
<td>71.0</td>
</tr>
<tr>
<td>3.5</td>
<td>51</td>
<td>134.7</td>
<td></td>
</tr>
<tr>
<td>4.0</td>
<td>58</td>
<td>151.9</td>
<td>89.6</td>
</tr>
<tr>
<td>4.5</td>
<td>65</td>
<td>168.3</td>
<td></td>
</tr>
<tr>
<td>5.0</td>
<td>73</td>
<td>184.0</td>
<td>107.3</td>
</tr>
<tr>
<td>6.0</td>
<td>87</td>
<td></td>
<td>124.3</td>
</tr>
<tr>
<td>7.0</td>
<td>102</td>
<td></td>
<td>140.4</td>
</tr>
<tr>
<td>8.0</td>
<td>116</td>
<td></td>
<td>155.7</td>
</tr>
<tr>
<td>9.0</td>
<td>131</td>
<td></td>
<td>170.2</td>
</tr>
<tr>
<td>10.0</td>
<td>145</td>
<td></td>
<td>184.0</td>
</tr>
</tbody>
</table>

Le type paramétrable permet de choisir 8 points dans la plage 0-480Ω. La pression peut également être définie.

Si l’entrée VDO est utilisée comme contacteur de niveau, elle ne doit recevoir aucune tension, sous peine de dommages. Se reporter à la notice d’applications pour des informations complémentaires sur le câblage.
7.10.6 VDO water (eau)
Cette entrée VDO sert à mesurer la température de l’eau de refroidissement.

<table>
<thead>
<tr>
<th>Température</th>
<th>Type 1</th>
<th>Type 2</th>
<th>Type 3</th>
<th>Type 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>°C</td>
<td>Ω</td>
<td>Ω</td>
<td>Ω</td>
<td>Ω</td>
</tr>
<tr>
<td>40</td>
<td>291.5</td>
<td>480.7</td>
<td>69.3</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>197.3</td>
<td>323.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>134.0</td>
<td>222.5</td>
<td>36.0</td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>97.1</td>
<td>157.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>70.1</td>
<td>113.2</td>
<td>19.8</td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>51.2</td>
<td>83.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>38.5</td>
<td>62.4</td>
<td>11.7</td>
<td></td>
</tr>
<tr>
<td>110</td>
<td>29.1</td>
<td>47.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>120</td>
<td>22.4</td>
<td>36.8</td>
<td>7.4</td>
<td></td>
</tr>
<tr>
<td>130</td>
<td>28.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>140</td>
<td>22.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>150</td>
<td>18.2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Le type paramétrable permet de choisir 8 points dans la plage 0-480Ω. La température peut également être définie.

Si l’entrée VDO est utilisée comme contacteur de niveau, elle ne doit recevoir aucune tension, sous peine de dommages. Se reporter à la notice d’applications pour des informations complémentaires sur le câblage.

7.10.7 VDO fuel (carburant)
Cette entrée VDO sert à mesurer le niveau de carburant.

<table>
<thead>
<tr>
<th>Valeur</th>
<th>Résistance</th>
</tr>
</thead>
<tbody>
<tr>
<td>0%</td>
<td>78.8 Ω</td>
</tr>
<tr>
<td>100%</td>
<td>1.6 Ω</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Valeur</th>
<th>Résistance</th>
</tr>
</thead>
<tbody>
<tr>
<td>0%</td>
<td>3 Ω</td>
</tr>
<tr>
<td>100%</td>
<td>180 Ω</td>
</tr>
</tbody>
</table>
Si l’entrée VDO est utilisée comme contacteur de niveau, elle ne doit recevoir aucune tension, sous peine de dommages. Se reporter à la notice d’applications pour des informations complémentaires sur le câblage.

<table>
<thead>
<tr>
<th>Type de sonde VDO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valeur</td>
</tr>
<tr>
<td>%</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>20</td>
</tr>
<tr>
<td>30</td>
</tr>
<tr>
<td>40</td>
</tr>
<tr>
<td>50</td>
</tr>
<tr>
<td>60</td>
</tr>
<tr>
<td>70</td>
</tr>
<tr>
<td>80</td>
</tr>
<tr>
<td>90</td>
</tr>
<tr>
<td>100</td>
</tr>
</tbody>
</table>

Le type paramétrable permet de choisir 8 points dans la plage 0-480Ω. La valeur en % peut également être définie.
7.10.8 Illustration des entrées paramétrables

![Diagramme illustrant les points de réglage paramétrables](image)

7.10.9 Configuration
Les 8 points de réglage des entrées VDO paramétrables ne peuvent pas être modifiés via l’écran, mais uniquement dans l’utilitaire USW. Les réglages d’alarme peuvent être effectués aussi bien via l’affichage que dans l’utilitaire USW. Dans l’USW, les entrées paramétrables sont définies dans la boîte de dialogue suivante:

![Boîte de dialogue USW pour les entrées paramétrables](image)
Régler la résistance de la sonde VDO à la valeur de mesure précise souhaitée. Ci-dessus, le réglage est de 10Ω à 0.0 bar.

7.10.10 Numérique
Le choix « Digital » pour les entrées multiples en fait des entrées paramétrables.

7.11 Fenêtre des sorties du régulateur de vitesse et de l’AVR

Fenêtre des sorties du régulateur de vitesse et de l’AVR peut être activée en appuyant sur pour plus de 2 secondes. Le but de cette fenêtre est de fournir à l’ingénieur de mise en service un outil utile pour le réglage de la régulation.

<table>
<thead>
<tr>
<th>G</th>
<th>0</th>
<th>0</th>
<th>0V</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-Q Setp</td>
<td>100%</td>
<td>100%</td>
<td></td>
</tr>
<tr>
<td>P-Q Reg.</td>
<td>50%</td>
<td>60%</td>
<td></td>
</tr>
<tr>
<td>GOV</td>
<td>AVR</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Le réglage des points de consigne AVR nécessite l’option D1.

7.12 Choix du fonctionnement des entrées

Les alarmes utilisant des entrées numériques peuvent être paramétrées en spécifiant quand elles doivent être activées. Les choix possibles pour le fonctionnement des entrées sont : normalement ouverte ou normalement fermée.

Le schéma ci-dessous illustre l’utilisation d’une entrée numérique comme alarme.

1. L’alarme numérique est configurée à NC, normalement fermée.
 L’alarme se déclenche quand le signal de l’entrée numérique disparaît.
2. L’alarme numérique est configurée à NO, normalement ouverte.
L’alarme se déclenche quand le signal de l’entrée numérique apparaît.

Le fonctionnement de la sortie relais ne peut être modifié. Ce sera toujours un relais NO qui se fermera quand l’alarme se déclenche, alarme = CC (contact fermé).

7.13 Choix de la langue

L’unité offre la possibilité d’afficher en plusieurs langues. Elle est livrée avec une langue par défaut qui est l’anglais, ce qui ne peut pas être changé. Outre la langue par défaut, 11 langues différentes peuvent être choisies. Pour ce faire, utiliser la fonction « Translations » de l’USW.

Les langues sont sélectionnées dans le menu d’installation du système, menu 6080. Ce choix peut être modifié en utilisant l’utilitaire USW. Il n’est pas possible de configurer les langues via l’affichage, mais seulement d’effectuer un choix parmi les langues déjà définies.

7.14 Compteurs

Il existe des compteurs pour diverses valeurs, dont certaines sont modifiables, par exemple lors de l’installation d’un nouveau disjoncteur ou d’une unité PPM-3 sur un générateur pré-existant.
Le tableau ci-dessous montre les valeurs paramétrables et leur fonction dans le menu 6100.

<table>
<thead>
<tr>
<th>Description</th>
<th>Fonction</th>
<th>Commentaire</th>
</tr>
</thead>
<tbody>
<tr>
<td>6101 Running time</td>
<td>Nombre total d'heures de fonctionnement avec possibilité de décalage.</td>
<td>Tourne quand il existe un retour d'information moteur tournant.</td>
</tr>
<tr>
<td>6102 Running time</td>
<td>Nombre total de milliers d'heures de fonctionnement avec possibilité de décalage.</td>
<td>Tourne quand il existe un retour d'information moteur tournant.</td>
</tr>
<tr>
<td>6103 GB/BTB operations</td>
<td>Nombre d'opérations de disjoncteur de générateur avec possibilité de décalage.</td>
<td>Compte chaque commande de fermeture de GB/BTB.</td>
</tr>
<tr>
<td>6104 TB operations</td>
<td>Décalage du nombre d'opérations du disjoncteur de générateur.</td>
<td>Unité générateur de secours uniquement Compte chaque commande de fermeture de TB.</td>
</tr>
<tr>
<td>6105 kWh reset</td>
<td>Remise à zéro du compteur de kWh.</td>
<td>Se remet automatiquement à OFF après utilisation. Cette fonction ne peut pas rester activée.</td>
</tr>
<tr>
<td>6106 Start attempts</td>
<td>Nombre de tentatives de démarrage, avec possibilité de décalage.</td>
<td>Compte chaque tentative de démarrage.</td>
</tr>
</tbody>
</table>

7.15 Compteurs kWh/kVArh

Le PPM-3 a deux sorties à transistor, chacune représentant une unité de production d'énergie. Il s'agit de sorties à impulsions, avec une durée d'impulsion de 1 seconde pour chaque activation.

<table>
<thead>
<tr>
<th>Numéro borne</th>
<th>Sortie</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>kWh</td>
</tr>
<tr>
<td>21</td>
<td>kVArh</td>
</tr>
<tr>
<td>22</td>
<td>borne commune</td>
</tr>
</tbody>
</table>

Le nombre d'impulsions dépend du réglage de valeur de la puissance nominale :

<table>
<thead>
<tr>
<th>Puissance gén.</th>
<th>Valeur</th>
<th>Nb impulsions (kWh)</th>
<th>Nb impulsions (kVArh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P_{\text{NOM}})</td>
<td><100 kW</td>
<td>1 impulsion/kWh</td>
<td>1 impulsion/kVArh</td>
</tr>
<tr>
<td>(P_{\text{NOM}})</td>
<td>100-1000 kW</td>
<td>1 impulsion/10kWh</td>
<td>1 impulsion/10kVArh</td>
</tr>
<tr>
<td>(P_{\text{NOM}})</td>
<td>>1000 kW</td>
<td>1 impulsion/100kWh</td>
<td>1 impulsion/100kVArh</td>
</tr>
</tbody>
</table>

La mesure de kWh est également affichée, mais la mesure de kVArh n'est disponible qu'avec la sortie transistor.

Attention – L'intensité maximale pour la sortie à transistor est de 10mA.
7.16 M-logic

7.16.1 M-logic
La fonctionnalité M-logic est livrée en standard avec l’unité quelle que soit l’option choisie, cependant le choix de certaines options E/S peut élargir ses possibilités.

M-logic sert à exécuter diverses commandes en fonction de conditions prédéfinies. M-logic n’est pas un PLC mais peut en remplacer un, pour ne créer que des commandes très simples. M-logic est un outil simple basé sur une logique d’événements. Une ou plusieurs conditions en entrée sont définies, et à l’activation de ces entrées, la sortie prédéfinie est déclenchée. Une grande variété d’entrées peut être utilisée, comme des entrées numériques, des conditions d’alarme ou de fonctionnement. Un grand choix de sorties est également disponible, comme des sorties relais, un changement de mode de générateur ou un changement de mode de fonctionnement.

M-logic fait partie de l’utilitaire USW, et ne peut donc être paramétré que dans celui-ci et pas via l’affichage.

Le but principal de M-logic est de fournir à l’opérateur/tableautier plus de souplesse dans l’exploitation du système de gestion de générateurs.

Voir le document « Notice d’application M-Logic » pour une description de cet outil de paramétrage.

7.17 Communication par l’USW
Il est possible de communiquer avec l’unité par l’intermédiaire de l’utilitaire PC (USW), le but étant de pouvoir surveiller et gérer le générateur à distance.

Il est possible de contrôler un générateur à distance à partir du logiciel USW. Il faut cependant prendre toutes les mesures de sécurité pour éviter des dommages corporels ou la mort.

7.17.1 Paramétrage de l’application
Se référer à l’aide de l’utilitaire PC (USW).

7.17.2 Sécurité
En cas d’échec de communication, l’unité fonctionne selon les données reçues. Si par exemple seulement la moitié du fichier des paramètres a été téléchargée au moment de l’interruption de la communication, l’unité utilisera les données dont elle dispose.

7.18 Réglage des valeurs nominales
Les réglages de valeurs nominales peuvent être modifiés pour s’accorder avec différentes tensions et fréquences. Le PPM-3 a deux jeux de valeurs nominales, réglables dans les menus 6000 et 6010 (Nominal settings 1 et 2).

La possibilité d’alterner entre les deux jeux de points de consigne nominaux est couramment utilisée avec des générateurs où l’alternance entre 50 and 60 Hz est nécessaire.
7.18.1 Activation
Il y a trois façons d’alterner entre les points de consigne nominaux : entrée numérique, AOP, ou menu 6006.

Entrée numérique
M-logic est utilisé quand une entrée numérique est nécessaire pour altemer entre les quatre jeux de valeurs nominales. Choisir l’entrée souhaitée parmi les événements en entrée et les valeurs nominales en sortie.

Exemple:

<table>
<thead>
<tr>
<th>Événement A</th>
<th>Événement B</th>
<th>Événement C</th>
<th>Sortie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entrée numérique n° 115</td>
<td>Inutilisée</td>
<td>Inutilisée</td>
<td>régler à paramètres nominaux 1</td>
</tr>
<tr>
<td>Pas Entrée numérique n° 115</td>
<td>Inutilisée</td>
<td>Inutilisée</td>
<td>régler à paramètres nominaux 2</td>
</tr>
</tbody>
</table>

Voir le fichier d’aide de l’utilitaire USW pour plus de détails.

AOP
M-Logic intervient quand l’AOP est utilisé pour effectuer une sélection entre les 4 jeux de réglages nominaux. Parmi les événements en entrée, choisir la touche AOP souhaitée, et définir les réglages nominaux pour les sorties.

Exemple:

<table>
<thead>
<tr>
<th>Événement A</th>
<th>Événement B</th>
<th>Événement C</th>
<th>Sortie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Button07 (touche 07)</td>
<td>Inutilisée</td>
<td>Inutilisée</td>
<td>régler à paramètres nominaux 1</td>
</tr>
<tr>
<td>Button08 (touche 08)</td>
<td>Inutilisée</td>
<td>Inutilisée</td>
<td>régler à paramètres nominaux 2</td>
</tr>
</tbody>
</table>

Voir le fichier d’aide de l’utilitaire USW pour plus de détails.

Réglage par le menu
Dans le menu 6006, le changement entre les jeux de paramètres 1 et 2 est effectué simplement en choisissant le réglage nominal souhaité.
8. Alarmes

8.1 Généralités

A quelques exceptions près, les alarmes sont réglées en % de valeur nominale du générateur. Les réglages sont en temps défini, avec sélection d’un point de consigne et d’une temporisation.

En cas de surtension, par exemple, la temporisation sera activée si le point de consigne est dépassé. Si la tension passe en dessous du point de consigne avant expiration de la temporisation, la temporisation sera arrêtée et réinitialisée.

A la fin de la temporisation, la sortie est activée. Le temps total est la somme de la temporisation et du temps de réaction.

8.2 Alarmes de tension

Toutes les alarmes de tension dans le système PPM-3 sont basées sur des mesures entre phases:

<table>
<thead>
<tr>
<th>Tension entre phases</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Tension nominale</td>
<td>400/230</td>
</tr>
<tr>
<td>Tension basse, erreur de 10%</td>
<td>360/185</td>
</tr>
</tbody>
</table>
8.3 Protection surintensité en fonction de la tension

Cette protection calcule le point de consigne de la surintensité en fonction de la tension mesurée aux bornes de tension du générateur.

Le résultat s’exprime sous forme d’une courbe :

Si la tension baisse, le point de consigne de surintensité baisse aussi.

⚠ Les valeurs de la tension pour les 6 points de la courbe sont imposées; les valeurs pour l’intensité peuvent être définies dans la plage 50 – 200%.

⚠ Les % de tension et d’intensité se réfèrent aux valeurs nominales.

⚠ La temporisation peut être réglée dans la plage de 0.1-10.0 sec.
9. Contrôleur PID

9.1 Description du contrôleur PID

L’unité de contrôle est un contrôleur PID, constitué de trois régulateurs : proportionnel, intégral et dérivé. Le contrôleur PID élimine les écarts de régulation et se règle facilement.

Voir « Recommandations générales pour la mise en service ».

9.2 Contrôleurs

Le régulateur de vitesse (GOV) utilise trois contrôleurs. Il en va de même pour l’AVR si l’option D1 est choisie.

<table>
<thead>
<tr>
<th>Contrôleur</th>
<th>GOV</th>
<th>AVR</th>
<th>Commentaire</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>X</td>
<td></td>
<td>Contrôle de la fréquence</td>
</tr>
<tr>
<td>Power</td>
<td>X</td>
<td></td>
<td>Contrôle de la puissance</td>
</tr>
<tr>
<td>P load sharing</td>
<td>X</td>
<td></td>
<td>Contrôle de la répartition de charge de puissance active</td>
</tr>
<tr>
<td>Voltage (option D1)</td>
<td></td>
<td>X</td>
<td>Contrôle de la tension</td>
</tr>
<tr>
<td>VAr (option D1)</td>
<td></td>
<td>X</td>
<td>Contrôle du facteur de puissance</td>
</tr>
<tr>
<td>Q load sharing (option D1)</td>
<td>X</td>
<td>X</td>
<td>Contrôle de la répartition de charge de puissance réactive</td>
</tr>
</tbody>
</table>

Les contrôleurs actifs sont indiqués dans le tableau ci-dessous. Ils peuvent être réglés quand les conditions de fonctionnement évoquées sont présentes.

Pour un générateur diesel

<table>
<thead>
<tr>
<th>Régulateur de vitesse</th>
<th>AVR (suivant l’option)</th>
<th>Schéma</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fréquence</td>
<td>Puissance</td>
<td>P LS</td>
</tr>
<tr>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DEIF A/S

Page 112 of 128
Pour un générateur de secours

<table>
<thead>
<tr>
<th>Régulateur de vitesse</th>
<th>AVR (suivant l’option)</th>
<th>Schéma</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fréquence</td>
<td>Puissance</td>
<td>P LS</td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

9.3 Schéma de principe

9.3.1 Schéma de principe
Le schéma ci-dessous illustre le principe de base du contrôleur PID.

\[
\text{PID}(s) = K_p \cdot \left(1 + \frac{1}{T_i \cdot s} + T_d \cdot s\right)
\]

Comme le montrent le schéma et l’équation précédents, la somme des valeurs de sortie de chaque régulateur (P, I et D) est transmise à la sortie du contrôleur.

Les valeurs paramétrables des contrôleurs PID de l’unité PPM-3 sont :

- **Kp**: le gain, pour la partie proportionnelle
- **Ti**: le temps d’action de l’intégrale, pour la partie intégrale.
- **Td**: le temps d’action de la dérivée, pour la partie dérivée.

Chacune des fonctions (P, I, D) sera décrite dans les paragraphes suivants.

9.4 Régulateur proportionnel
Lorsqu’un écart de régulation intervient, la partie proportionnelle entraîne une correction immédiate de la sortie, dont l’amplitude dépend du gain Kp.
Le diagramme montre la corrélation entre la sortie du régulateur P et le paramétrage de Kp. La correction de la sortie à un Kp donné est multipliée par deux quand l’écart de régulation double.

9.4.1 Plage de vitesse
Compte tenu des courbes ci-dessus, il est recommandé d’utiliser toute la plage de sortie pour éviter une instabilité de la régulation. Si la plage de sortie est trop limitée, un petit écart de régulation entrainera une correction assez considérable de la sortie, ce qu’illustre le schéma suivant.

Soit un écart de régulation de 1%. Le Kp étant fixé, l’écart entraîne une correction de la sortie de 5mA. Le tableau suivant montre que la sortie du PPM-3 est assez fortement modifiée quand la plage de vitesse maximum est basse.
<table>
<thead>
<tr>
<th>Plage de vitesse max.</th>
<th>Correction de la sortie</th>
<th>Correction sortie en % plage de vitesse max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 mA</td>
<td>5 mA</td>
<td>5/10*100%</td>
</tr>
<tr>
<td>10 mA</td>
<td>5 mA</td>
<td>5/20*100%</td>
</tr>
</tbody>
</table>

9.4.2 Zone de régulation dynamique
Le schéma ci-dessous représente la zone de régulation dynamique pour certaines valeurs de Kp. La zone dynamique se réduit quand Kp augmente.

9.4.3 Régulateur intégral
La principale fonction du régulateur intégral est de supprimer le décalage. Le temps d'action de l'intégrale Ti est défini comme le temps que le régulateur intégral utilise pour répéter la correction transitoire de sortie produite par le régulateur proportionnel.

Dans le schéma ci-dessous, le régulateur proportionnel entraine une correction immédiate de 2.5mA. Le temps d'action de l'intégrale est alors mesuré quand la sortie atteint 2 x 2.5mA = 5mA.
Comme le montre le schéma, la sortie atteint 5mA deux fois plus vite avec un Ti fixé à 10s qu’avec un Ti réglé à 20s.

La fonction d’intégration du régulateur I augmente quand le temps d’action de l’intégrale diminue, ce qui revient à dire que réduire le temps d’action de l’intégrale Ti permet d’obtenir une régulation plus rapide.

Si Ti est réglé à 0 s, le régulateur I s’éteint.

Le temps d’action de l’intégrale action Ti ne doit pas être trop bas, sinon, il y aurait une instabilité de régulation comparable à celle occasionnée par un Kp trop élevé.

9.4.4 Régulateur dérivé

L’objectif principal du régulateur dérivé (régulateur D) est de stabiliser la régulation, ce qui permet d’augmenter le gain et de diminuer le temps d’action de l’intégrale Ti. La régulation globale corrige ainsi les écarts beaucoup plus rapidement.

Dans la plupart des cas, le régulateur dérivé n’est pas nécessaire; il peut néanmoins se révéler très utile dans les situations exigeant une régulation très précise, par exemple lors de synchronisation statique.

La sortie du régulateur D peut être exprimée par l’équation :

\[D = T_d \cdot K_p \cdot \frac{de}{dt} \]
D = Sortie régulateur
Kp = Gain
de/dt = pente de l’écart (vitesse à laquelle l’écart intervient)

La sortie du régulateur D dépend donc de la pente de l’écart, du Kp et du paramétrage de Td.

Exemple:
Dans l’exemple ci-dessous, on suppose que Kp = 1.

![Diagramme du régulateur D](image)

Deviation 1: Ecart avec une pente de 1.
Deviation 2: Ecart avec une pente de 2.5 (2.5 fois plus important que écart 1).
D-output 1, Td=0.5 s: Sortie du régulateur D quand Td=0.5s et écart = Deviation 1.
D-output 2, Td=0.5 s: Sortie du régulateur D quand Td=0.5s et écart = Deviation 2.
D-output 2, Td=1 s: Sortie du régulateur D quand Td=Td=1s et écart = Deviation 2.

L’exemple montre que plus l’écart est important et le Td élevé, plus la valeur de sortie du régulateur D est élevée. La réponse du régulateur D étant corélée à la pente de l’écart de régulation, quand il n’y a pas de correction, la sortie du régulateur D est nulle.

ℹ️ Lors de la mise en service, garder à l’esprit que le réglage du Kp a une influence sur la sortie du régulateur D.

ℹ️ Si Td est réglé à 0 s, le régulateur D s’éteint.

ℹ️ Le temps d’action de la dérivée Td ne doit pas être trop élevé. Sinon, il y aurait une instabilité de régulation comparable à celle occasionnée par un Kp trop élevé.
9.5 Contrôleur de répartition de charge

Le contrôleur de répartition de charge est utilisé dans le PPM-3 lorsque le mode « load sharing » (répartition de charge) est activé. Il s’agit d’un contrôleur PID comparable aux autres régulateurs du système, qui assure le contrôle de la fréquence ainsi que celui de la puissance.

Le réglage de ce contrôleur s’effectue dans les menus 2540 (contrôle analogique) ou 2590 (contrôle par relais).

L’objectif principal du contrôleur PID est toujours le contrôle de fréquence, car dans un système de répartition de charge la fréquence varie, de même que la puissance pour un générateur donné. Comme ce système de répartition de charge nécessite également une régulation de la puissance, le contrôleur PID peut être influencé par le régulateur de puissance. Un facteur dit de pondération est donc mis en oeuvre (appelé \(P_{\text{WEIGHT}}\)).

L’écart de régulation du régulateur de puissance peut avoir une influence plus ou moins grande sur le contrôleur PID. Un réglage à 0% a pour résultat un arrêt du contrôle de la puissance. Un réglage à 100% signifie que la régulation de puissance n’est pas limitée par le facteur de pondération. Tous les réglages entre ces deux extrêmes sont possibles.

Régler le facteur de pondération à une valeur élevée ou faible conditionne la vitesse à laquelle l’écart de régulation de puissance est corrigé. Si une répartition de charge très stable est requise, le facteur de pondération doit être fixé à une valeur plus élevée que pour une répartition de charge plus souple.

L’inconvénient attendu d’un facteur de pondération élevé est le risque d’instabilité de la régulation en présence d’un écart de fréquence et de puissance. Le remède consiste à diminuer soit le facteur de pondération, soit les paramètres du régulateur de fréquence.

9.6 Contrôleur de synchronisation

Le contrôleur de synchronisation est utilisé dans le PPM-3 lorsque la synchronisation est activée. Une fois la synchronisation réalisée, le contrôleur de fréquence est désactivé et le contrôleur approprié est activé, par exemple le contrôleur de répartition de charge. Les réglages sont effectués dans le menu 2050.

9.6.1 Synchronisation dynamique

En cas de synchronisation dynamique, le contrôleur « 2050 \(f_{\text{SYNCcontroller}}\) » est utilisé pendant toute la durée de la séquence de synchronisation. Un des avantages de la synchronisation dynamique est sa relative rapidité. Pour accroître encore la vitesse de synchronisation, le générateur est accéléré entre les points de synchronisation (midi à midi) des deux systèmes. Normalement, une fréquence de glissement de 0.1Hz donne une synchronisation toutes les 10 secondes, mais avec ce système, sur un moteur régulier, le temps entre deux synchronisations est réduit.

9.6.2 Synchronisation statique

Quand la synchronisation commence, le contrôleur de synchronisation « 2050 \(f_{\text{SYNCcontroller}}\) » est activé et la fréquence du générateur est amenée à la fréquence du jeu de barres/du réseau. Le contrôleur de phase prend le relais quand l’écart de fréquence est si faible que l’angle de phase peut être contrôlé. Le réglage du contrôleur de phase s’effectue dans le menu 2070 (‘2070 phase controller’).
9.7 Contrôle par relais

Le schéma ci-dessous explique le fonctionnement de la régulation lorsque les sorties relais sont utilisées :

La régulation par relais comprend cinq étapes.

<table>
<thead>
<tr>
<th>#</th>
<th>Plage</th>
<th>Description</th>
<th>Commentaire</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Statique</td>
<td>Signal "up" fixe</td>
<td>La régulation est activée, mais le relais d’augmentation de fréquence est activé en permanence en raison de l’amplitude de l’écart de régulation.</td>
</tr>
<tr>
<td>2</td>
<td>Dynamique</td>
<td>Impulsion "up"</td>
<td>La régulation est activée et le relais d’augmentation de fréquence émet des impulsions afin d’éliminer l’écart de régulation.</td>
</tr>
<tr>
<td>3</td>
<td>Zone de bande morte</td>
<td>Pas de régulation</td>
<td>Dans cette plage aucune régulation n’intervient. La régulation tolère une zone de bande morte prédéfinie, dans le but d’augmenter la durée de vie des relais.</td>
</tr>
<tr>
<td>4</td>
<td>Dynamique</td>
<td>Impulsion "down"</td>
<td>La régulation est activée et le relais de diminution de fréquence émet des impulsions afin d’éliminer l’écart de régulation.</td>
</tr>
<tr>
<td>5</td>
<td>Statique</td>
<td>Signal "down" fixe</td>
<td>La régulation est activée, mais le relais de diminution de fréquence est activé en permanence en raison de l’amplitude de l’écart de régulation.</td>
</tr>
</tbody>
</table>

Comme le montre le schéma, les relais sont activés en continu si l’écart de régulation est important et émettent des impulsions si ce dernier se rapproche du point de consigne. Dans la plage dynamique, les impulsions deviennent de plus en plus courtes à mesure que l’écart de régulation se réduit. Juste avant la zone de
Le paramétrage des relais de régulation s’effectue dans le panneau de configuration. Il est possible de définir la période et le « ON-time ».

<table>
<thead>
<tr>
<th>Réglage</th>
<th>Description</th>
<th>Commentaire</th>
</tr>
</thead>
<tbody>
<tr>
<td>Period time</td>
<td>Temps maximum d’activation du relais</td>
<td>Temps séparant le début des impulsions de deux relais consécutifs.</td>
</tr>
</tbody>
</table>
| ON time | Temps minimum d’activation du relais | Durée minimale d’impulsion du relais. Le temps d’activation des relais ne sera jamais inférieur au « ON-time ».

Comme le montre le schéma suivant, la durée d’impulsion du relais dépend de l’écart de régulation instantané. Si l’écart est important, l’impulsion sera longue (ou le signal continu). Si l’écart est faible, l’impulsion sera de courte durée.

9.7.2 Durée du signal
La durée du signal est calculée par rapport à la période fixée. Le schéma ci-dessous montre l’effet du régulateur proportionnel.
Dans cet exemple, l’écart de régulation est de 2 % et Kp est fixé à 20. La valeur calculée par le régulateur pour l’unité est 40%. A présent la durée de l’impulsion peut être calculée avec une période de 2500ms:

\[
\frac{e_{deviation}}{100} \times \text{PERIOD} \\
\frac{40}{100} \times 2500 = 1000ms
\]

La durée de la période ne sera jamais inférieure à celle du « ON time » prédéfini.
10. Synchronisation

10.1 Modes de synchronisation disponibles

10.1.1 Modes de synchronisation disponibles

L'unité peut être utilisée pour synchroniser le disjoncteur générateur et le disjoncteur de couplage (le disjoncteur de couplage n'est disponible que sur l'unité générateur de secours). Deux modes de synchronisation sont disponibles : statique et dynamique (dynamique est l’option par défaut). Ce chapitre décrit les principes des fonctions de synchronisation ainsi que leur paramétrage.

Le terme "synchronisation" sera employé dans le sens de "synchronisation et fermeture du disjoncteur synchronisé".

10.2 Synchronisation dynamique

En mode de synchronisation dynamique, le générateur à synchroniser tourne à une vitesse différente de celle du générateur sur le jeu de barres. Cet écart de vitesse est appelé fréquence de glissement. Typiquement, le générateur à synchroniser fonctionne avec une fréquence de glissement positive, c'est-à-dire qu'il tourne à une vitesse supérieure à celle du générateur sur le jeu de barres. L'objectif est d'éviter un retour de puissance après synchronisation.

Le principe de la synchronisation dynamique est illustré par le schéma ci-dessous.
Dans l'exemple ci-dessus, le générateur à synchroniser tourne à 1503 trs/mn ~ 50.1Hz. Le générateur en charge tourne à 1500 trs/mn ~ 50.0Hz. Le générateur à synchroniser a donc une fréquence de glissement positive de 0.1Hz.

Le but de la synchronisation est de réduire la différence d'angle de phase entre les deux systèmes tournants que représentent le système triphasé du générateur et le système triphasé du jeu de barres. Dans l'illustration précédente, la phase L1 du jeu de barres pointe toujours vers midi, alors que celle du générateur à synchroniser pointe dans différentes directions en raison de la fréquence de glissement.

Les deux systèmes triphasés sont bien sûr en rotation, mais dans un but d'illustration les vecteurs du générateur en charge ne sont pas montrés en rotation. Seule nous intéresse ici la fréquence de glissement pour le calcul du moment où l'impulsion de synchronisation devra être émise.

Lorsque le générateur tourne avec une fréquence de glissement positive de 0.1Hz par rapport au jeu de barres, les deux systèmes sont synchronisés toutes les 10 secondes.

\[
\frac{1}{50.1-50.0} = 10 \text{ sec}
\]

Se référer au chapitre consacré aux contrôleurs PID et aux contrôleurs de synchronisation à propos de l'intervalle de synchronisation.

Dans l'exemple ci-dessus, la différence d'angle de phase entre le générateur à synchroniser et le jeu de barres diminue pour finalement s'annuler. Le générateur est alors synchronisé avec le jeu de barres et le disjoncteur se ferme.

10.2.1 Signal de fermeture

L'unité calcule toujours le moment de fermeture du disjoncteur de façon à obtenir la synchronisation la plus précise possible. Le signal de fermeture du disjoncteur est émis avant la synchronisation (les phases L1 sont exactement sur midi).

Le moment d'émission du signal de fermeture du disjoncteur dépend du temps de fermeture du disjoncteur et de la fréquence de glissement (le temps de réponse du disjoncteur est de 250 ms et la fréquence de glissement est 0.1Hz) :

\[
\text{deg crossover} = 360 \times \text{freq} \times \text{time response}
\]
\[
\text{deg crossover} = 360 \times 0.250 \times 0.1
\]
\[
\text{deg crossover} = 9 \text{ deg}
\]

L'impulsion de synchronisation est toujours émise de façon à ce que la fermeture du disjoncteur intervienne à midi.

La durée de l'impulsion de synchronisation est égale au temps de réponse + 20ms (2020 Synchronisation).
10.2.2 Situation de charge après synchronisation

Quand le générateur entrant a fermé son disjoncteur, il prend une partie de la charge en fonction de la position de la crémallière de réglage du carburant. Ci-dessous, la figure 1 indique qu'à une fréquence de glissement *positive* donnée, le générateur entrant *exporte* la puissance vers la charge. La figure 2 montre qu'à une fréquence de glissement *négative* donnée, le générateur entrant *reçoit* de la puissance de la part du générateur initial. Ce phénomène est appelé *Retour de puissance*.

Pour éviter des déclenchements intempestifs de disjoncteur dus à un retour de puissance, on peut choisir une fréquence de glissement positive lors du paramétrage de la synchronisation.

Figure 1, fréquence de glissement POSITIVE

Figure 2, fréquence de glissement NEGATIVE

10.2.3 Réglages

La synchronisation dynamique est choisie dans le panneau de configuration et paramétrée dans le menu 2020 Synchronisation.
Il est évident que ce type de synchronisation est relativement rapide en raison du réglage des valeurs minimum et maximum de la fréquence de glissement. Lorsque l’unité tend à amener la fréquence au point de consigne, la synchronisation est toujours possible tant que la fréquence est comprise entre les limites prédéfinies de la fréquence de glissement.

La synchronisation dynamique est recommandée quand une synchronisation rapide est nécessaire et que les générateurs entrants sont capables de prendre la charge juste après la fermeture du disjoncteur.

10.3 Synchronisation statique

En cas de synchronisation statique, le générateur à synchroniser tourne pratiquement à la même vitesse que le générateur sur le jeu de barres. L’objectif est de les faire tourner exactement à la même vitesse et avec des angles de phase entre les systèmes triphasés du générateur et du jeu de barres identiques.

Il n’est pas recommandé d’appliquer le principe de synchronisation statique en cas de régulation par sorties relais, en raison de la relative lenteur du processus.

Le principe de la synchronisation statique est illustré page suivante.
10.3.1 Contrôleur de phase
Quand la synchronisation statique est utilisée et que la synchronisation est lancée, le contrôleur de fréquence amène la fréquence du générateur à celle du jeu de barres. Lorsque la fréquence du générateur est à 50mHz de la fréquence du jeu de barres, le contrôleur de phase prend le relais. Ce contrôleur utilise la différence d’angle entre le système du générateur et le système du jeu de barres comme paramètre de contrôle.

C’est ce qu’illustre l’exemple ci-dessus où le contrôleur ramène l’angle de phase de 30 à 0 degrés.

10.3.2 Signal de fermeture
Le signal de fermeture est émis quand la phase L1 du générateur à synchroniser est proche de midi comparée à celle du jeu de barres qui est également sur midi. Il n’est pas judicieux d’utiliser le temps de réponse du disjoncteur en cas de synchronisation statique, car la fréquence de glissement est très faible voire nulle.

Pour obtenir une synchronisation plus rapide, une fenêtre de fermeture peut être choisie. Le signal de fermeture est émis quand l’angle de phase $\text{GENL1}-\text{UBL1}$ atteint le point de consigne. La plage est de +/-0.1-20.0 degrés. Ceci est illustré dans le diagramme ci-dessous.
L’impulsion de synchronisation est envoyée en fonction des réglages effectués dans le menu 2020 Synchronisation. Cela dépend si c’est le GB/SCB/BTB ou le TB (EDG uniquement) qui est à synchroniser.

10.3.3 Situation de charge après synchronisation

Le générateur synchronisé n’est pas soumis à une charge immédiatement après la fermeture du disjoncteur, si le df maximum est réglé à une valeur basse. Puisque la position de la crémaillère de réglage du carburant est pratiquement celle qui est requise pour tourner à la fréquence du jeu de barres, il n’y a pas de saut de charge.

Si le df maximum est réglé à une valeur élevée, les observations de la section concernant la synchronisation dynamique doivent être retenues.

Après synchronisation, l’unité modifie le point de consigne du contrôleur en fonction des besoins du mode de fonctionnement du générateur choisi.

La synchronisation statique est recommandée dans les cas où aucune fréquence de glissement n’est admise, notamment quand plusieurs générateurs se synchronisent avec un jeu de barres sans groupes de charge connectés.
10.3.4 Paramétrage

Les réglages suivants doivent être effectués si la synchronisation statique est choisie :

<table>
<thead>
<tr>
<th>Paramètre</th>
<th>Description</th>
<th>Commentaire</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum df</td>
<td>Ecart de fréquence maximum admissible entre le jeu de barres et le générateur.</td>
<td>Valeur +/-</td>
</tr>
<tr>
<td>Maximum dU</td>
<td>Ecart de tension maximum admissible entre le jeu de barres et le générateur</td>
<td>Valeur +/-, liée à la tension nominale du générateur</td>
</tr>
<tr>
<td>Close window</td>
<td>La taille de la fenêtre pour l'émission de l'impulsion de synchronisation.</td>
<td>Valeur +/-</td>
</tr>
<tr>
<td>Phase K_p</td>
<td>Réglage du facteur proportionnel du contrôleur de phase PI</td>
<td>Utilisé uniquement lors de synchronisation statique.</td>
</tr>
<tr>
<td>Phase K_i</td>
<td>Réglage du facteur intégral du contrôleur de phase PI</td>
<td></td>
</tr>
</tbody>
</table>